test_pipelines_image_to_text.py 5.53 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
from transformers.pipelines import pipeline
19
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, require_vision, slow
20

21
from .test_pipelines_common import ANY
22
23
24
25
26
27
28
29
30
31
32
33


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


34
@is_pipeline_test
35
@require_vision
36
class ImageToTextPipelineTests(unittest.TestCase):
37
38
39
    model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
    tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING

40
    def get_test_pipeline(self, model, tokenizer, processor):
Yih-Dar's avatar
Yih-Dar committed
41
        pipe = pipeline("image-to-text", model=model, tokenizer=tokenizer, image_processor=processor)
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        examples = [
            Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]
        return pipe, examples

    def run_pipeline_test(self, pipe, examples):
        outputs = pipe(examples)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}],
            ],
        )

    @require_tf
    def test_small_model_tf(self):
60
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", framework="tf")
61
62
63
64
65
66
67
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(
            outputs,
            [
                {
68
                    "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
69
70
71
72
73
74
75
76
77
78
                },
            ],
        )

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [
                    {
79
80
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
81
82
83
                ],
                [
                    {
84
85
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
86
87
88
89
                ],
            ],
        )

90
91
92
93
94
95
        outputs = pipe(image, max_new_tokens=1)
        self.assertEqual(
            outputs,
            [{"generated_text": "growth"}],
        )

96
97
    @require_torch
    def test_small_model_pt(self):
98
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                },
            ],
        )

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [
                    {
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
                ],
                [
                    {
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
                ],
            ],
        )

    @slow
    @require_torch
    def test_large_model_pt(self):
131
        pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
            ],
        )

    @slow
    @require_tf
    def test_large_model_tf(self):
149
        pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en", framework="tf")
150
151
152
153
154
155
156
157
158
159
160
161
162
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
            ],
        )