test_pipelines_image_segmentation.py 19.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
from datasets import load_dataset
22

23
24
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
25
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
27
28
    AutoFeatureExtractor,
    AutoModelForImageSegmentation,
29
    AutoModelForInstanceSegmentation,
30
    DetrForSegmentation,
31
    ImageSegmentationPipeline,
32
    MaskFormerForInstanceSegmentation,
33
34
35
    is_vision_available,
    pipeline,
)
36
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
37
38
39
40
41
42
43
44
45
46
47
48
49
50

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


51
52
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
53
54
55
56
57
58
59
60
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
61
62


63
64
65
66
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
67
68
69
70
71
72
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
73
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
74
    }
75

76
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
77
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
78
79
80
81
82
83
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
84
        outputs = image_segmenter("./tests/fixtures/tests_samples/COCO/000000039769.png", threshold=0.0)
85
86
        self.assertIsInstance(outputs, list)
        n = len(outputs)
87
88
89
90
91
92
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation)):
            # Instance segmentation (maskformer) have a slot for null class
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
93
94
95
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
96

97
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        # RGBA
        outputs = image_segmenter(dataset[0]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
        outputs = image_segmenter(dataset[1]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
        outputs = image_segmenter(dataset[2]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
122
        batch = [
123
124
125
126
127
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
128
        ]
129
        outputs = image_segmenter(batch, threshold=0.0, batch_size=batch_size)
130
        self.assertEqual(len(batch), len(outputs))
131
        self.assertEqual(len(outputs[0]), n)
132
133
        self.assertEqual(
            [
134
135
136
137
138
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
139
            ],
140
141
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
142
143
144
145
146
147
148
149
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

    @require_torch
150
    @unittest.skip("No weights found for hf-internal-testing/tiny-detr-mobilenetsv3-panoptic")
151
    def test_small_model_pt(self):
152
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
153
154
155
156
157

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)

158
159
160
161
162
163
164
165
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
            task="panoptic",
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )

        # Shortening by hashing
166
        for o in outputs:
167
            o["mask"] = mask_to_test_readable(o["mask"])
168
169
170
171
172
173

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.004,
174
                    "label": "LABEL_215",
175
                    "mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
176
177
178
                },
                {
                    "score": 0.004,
179
                    "label": "LABEL_215",
180
                    "mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
181
182
183
184
185
186
187
188
189
190
191
192
193
                },
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
        )
        for output in outputs:
            for o in output:
194
                o["mask"] = mask_to_test_readable(o["mask"])
195
196
197
198
199
200
201

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
                        "score": 0.004,
202
                        "label": "LABEL_215",
203
                        "mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
204
205
206
                    },
                    {
                        "score": 0.004,
207
                        "label": "LABEL_215",
208
                        "mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
209
210
211
212
213
                    },
                ],
                [
                    {
                        "score": 0.004,
214
                        "label": "LABEL_215",
215
                        "mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
216
217
218
                    },
                    {
                        "score": 0.004,
219
                        "label": "LABEL_215",
220
                        "mask": {"hash": "34eecd16bb", "shape": (480, 640), "white_pixels": 0},
221
222
223
224
225
                    },
                ],
            ],
        )

226
227
228
229
230
231
232
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
233
            o["mask"] = mask_to_test_readable(o["mask"])
234
235
236
237

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
238
239
240
241
242
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
243
244
245
                {
                    "score": None,
                    "label": "LABEL_1",
246
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
247
248
249
250
                },
            ],
        )

251
252
253
254
255
256
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

257
258
259
260
261
262
263
264
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
            task="panoptic",
            threshold=0,
            overlap_mask_area_threshold=0.0,
        )

        # Shortening by hashing
265
        for o in outputs:
266
            o["mask"] = mask_to_test_readable(o["mask"])
267
268
269
270

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
301
302
303
304
305
306
307
308
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
309
            task="panoptic",
310
            threshold=0.0,
311
            overlap_mask_area_threshold=0.0,
312
        )
313
314

        # Shortening by hashing
315
316
        for output in outputs:
            for o in output:
317
                o["mask"] = mask_to_test_readable(o["mask"])
318
319
320
321
322

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
353
354
                ],
                [
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
385
386
387
388
389
390
391
392
393
394
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

395
396
397
398
399
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg", task="panoptic", threshold=0.999
        )
        # Shortening by hashing
        for o in outputs:
400
            o["mask"] = mask_to_test_readable(o["mask"])
401
402
403
404

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
405
406
407
408
409
410
411
412
413
414
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
415
416
417
418
419
420
            ],
        )

        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg", task="panoptic", threshold=0.5
        )
421
422

        for o in outputs:
423
            o["mask"] = mask_to_test_readable(o["mask"])
424
425
426
427

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
453
454
            ],
        )
455
456
457
458

    @require_torch
    @slow
    def test_maskformer(self):
459
        threshold = 0.8
460
461
        model_id = "facebook/maskformer-swin-base-ade"

462
463
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
464
465
466
467

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
468
        file = image[0]["file"]
469
        outputs = image_segmenter(file, task="panoptic", threshold=threshold)
470

471
        # Shortening by hashing
472
        for o in outputs:
473
            o["mask"] = mask_to_test_readable(o["mask"])
474
475
476
477

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
513
514
            ],
        )