test_modeling_mistral.py 35.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
"""Testing suite for the PyTorch Mistral model."""
16

17
import gc
18
import tempfile
19
20
import unittest

Yih-Dar's avatar
Yih-Dar committed
21
import pytest
22
from packaging import version
23

24
from transformers import AutoTokenizer, MistralConfig, is_torch_available, set_seed
25
26
from transformers.testing_utils import (
    backend_empty_cache,
27
    is_flaky,
28
    require_bitsandbytes,
29
30
31
    require_flash_attn,
    require_torch,
    require_torch_gpu,
32
    require_torch_sdpa,
33
34
35
    slow,
    torch_device,
)
36
37
38

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
39
from ...test_modeling_common import ModelTesterMixin, ids_tensor
40
41
42
43
44
45
46
47
48
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        MistralForCausalLM,
        MistralForSequenceClassification,
49
        MistralForTokenClassification,
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
        MistralModel,
    )


class MistralModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        num_key_value_heads=2,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        pad_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.pad_token_id = pad_token_id
        self.scope = scope

107
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs
108
109
110
111
112
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
113
            input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return MistralConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            num_key_value_heads=self.num_key_value_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
        )

149
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Mistral
150
151
152
153
154
155
156
157
158
159
    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MistralModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

160
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Mistral
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = MistralModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

191
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Mistral
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = MistralForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

210
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Mistral
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = MistralForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

273
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class MistralModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
292
293
294
        (MistralModel, MistralForCausalLM, MistralForSequenceClassification, MistralForTokenClassification)
        if is_torch_available()
        else ()
295
296
297
298
299
300
    )
    all_generative_model_classes = (MistralForCausalLM,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "feature-extraction": MistralModel,
            "text-classification": MistralForSequenceClassification,
301
            "token-classification": MistralForTokenClassification,
302
303
304
305
306
307
308
309
            "text-generation": MistralForCausalLM,
            "zero-shot": MistralForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_headmasking = False
    test_pruning = False
310
    fx_compatible = True
311

312
313
314
315
316
317
    # TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        return True

318
319
320
321
322
323
324
    # TODO: @Fxmarty
    @is_flaky(max_attempts=3, description="flaky on some models.")
    @require_torch_sdpa
    @slow
    def test_eager_matches_sdpa_generate(self):
        super().test_eager_matches_sdpa_generate()

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def setUp(self):
        self.model_tester = MistralModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MistralConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

    def test_Mistral_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        print(config)
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = MistralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_Mistral_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = MistralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_Mistral_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = MistralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTest.test_llama_token_classification_model with Llama->Mistral,llama->Mistral
    def test_Mistral_token_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        token_labels = ids_tensor([self.model_tester.batch_size, self.model_tester.seq_length], config.num_labels)
        model = MistralForTokenClassification(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=token_labels)
        self.assertEqual(
            result.logits.shape,
            (self.model_tester.batch_size, self.model_tester.seq_length, self.model_tester.num_labels),
        )

399
400
401
402
403
404
405
406
    @unittest.skip("Mistral buffers include complex numbers, which breaks this test")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip("Mistral uses GQA on all models so the KV cache is a non standard format")
    def test_past_key_values_format(self):
        pass

407
408
    @require_flash_attn
    @require_torch_gpu
Yih-Dar's avatar
Yih-Dar committed
409
    @pytest.mark.flash_attn_test
410
411
412
413
414
415
416
417
418
419
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        import torch

        for model_class in self.all_generative_model_classes:
            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
420
421
422
                model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
                    torch_device
                )
423
424
425
426
427
428
429

                dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
                dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)

                model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)

                model = model_class.from_pretrained(
430
431
432
433
                    tmpdirname,
                    torch_dtype=torch.float16,
                    attn_implementation="flash_attention_2",
                    low_cpu_mem_usage=True,
434
435
436
437
438
439
440
441
442
                ).to(torch_device)

                with self.assertRaises(ValueError):
                    _ = model.generate(
                        dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                    )

    @require_flash_attn
    @require_torch_gpu
Yih-Dar's avatar
Yih-Dar committed
443
    @pytest.mark.flash_attn_test
444
    @slow
445
    def test_flash_attn_2_generate_use_cache(self):
446
447
        import torch

448
449
450
451
452
453
454
455
456
457
458
459
        max_new_tokens = 30

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
460
461
462
463
464

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
465
466
467
468

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # NOTE: Mistral apparently does not support right padding + use_cache with FA2.
                dummy_attention_mask[:, -1] = 1
469
470

                model = model_class.from_pretrained(
471
472
                    tmpdirname,
                    torch_dtype=torch.float16,
473
                    attn_implementation="flash_attention_2",
474
475
                    low_cpu_mem_usage=True,
                ).to(torch_device)
476

477
478
                # Just test that a large cache works as expected
                _ = model.generate(
479
480
481
482
483
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
484
                )
485

486
487
488
489
    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
Yoach Lacombe's avatar
Yoach Lacombe committed
490
    def test_flash_attn_2_inference_equivalence_right_padding(self):
491
        self.skipTest("Mistral flash attention does not support right padding")
492

493

494
@require_torch_gpu
495
class MistralIntegrationTest(unittest.TestCase):
496
497
498
499
500
501
502
503
504
505
506
507
508
509
    # This variable is used to determine which CUDA device are we using for our runners (A10 or T4)
    # Depending on the hardware we get different logits / generations
    cuda_compute_capability_major_version = None

    @classmethod
    def setUpClass(cls):
        if is_torch_available() and torch.cuda.is_available():
            # 8 is for A100 / A10 and 7 for T4
            cls.cuda_compute_capability_major_version = torch.cuda.get_device_capability()[0]

    def tearDown(self):
        torch.cuda.empty_cache()
        gc.collect()

510
511
512
    @slow
    def test_model_7b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
513
514
515
        model = MistralForCausalLM.from_pretrained(
            "mistralai/Mistral-7B-v0.1", device_map="auto", torch_dtype=torch.float16
        )
516
        input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
Yih-Dar's avatar
Yih-Dar committed
517
518
        with torch.no_grad():
            out = model(input_ids).logits.cpu()
519
520
521
        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-2.5548, -2.5737, -3.0600, -2.5906, -2.8478, -2.8118, -2.9325, -2.7694]])
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
522
523
524
525
526
527

        EXPECTED_SLICE = {
            7: torch.tensor([-5.8781, -5.8616, -0.1052, -4.7200, -5.8781, -5.8774, -5.8773, -5.8777, -5.8781, -5.8780, -5.8781, -5.8779, -1.0787, 1.7583, -5.8779, -5.8780, -5.8783, -5.8778, -5.8776, -5.8781, -5.8784, -5.8778, -5.8778, -5.8777, -5.8779, -5.8778, -5.8776, -5.8780, -5.8779, -5.8781]),
            8: torch.tensor([-5.8711, -5.8555, -0.1050, -4.7148, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -1.0781, 1.7568, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711, -5.8711]),
        }  # fmt: skip

528
        print(out[0, 0, :30])
529
530
531
        torch.testing.assert_close(
            out[0, 0, :30], EXPECTED_SLICE[self.cuda_compute_capability_major_version], atol=1e-4, rtol=1e-4
        )
532

533
        del model
534
        backend_empty_cache(torch_device)
535
536
        gc.collect()

537
    @slow
538
    @require_bitsandbytes
539
    def test_model_7b_generation(self):
540
541
542
543
544
        EXPECTED_TEXT_COMPLETION = {
            7: "My favourite condiment is 100% ketchup. I love it on everything. I'm not a big",
            8: "My favourite condiment is 100% ketchup. I鈥檓 not a fan of mustard, mayo,",
        }

545
546
        prompt = "My favourite condiment is "
        tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False)
547
548
549
        model = MistralForCausalLM.from_pretrained(
            "mistralai/Mistral-7B-v0.1", device_map={"": torch_device}, load_in_4bit=True
        )
Yih-Dar's avatar
Yih-Dar committed
550
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
551
552
553
554

        # greedy generation outputs
        generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
        text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
555
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], text)
556
557

        del model
558
        backend_empty_cache(torch_device)
559
        gc.collect()
560
561
562
563
564
565
566
567
568
569

    @require_bitsandbytes
    @slow
    @require_flash_attn
    def test_model_7b_long_prompt(self):
        EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
        # An input with 4097 tokens that is above the size of the sliding window
        input_ids = [1] + [306, 338] * 2048
        model = MistralForCausalLM.from_pretrained(
            "mistralai/Mistral-7B-v0.1",
570
            device_map={"": torch_device},
571
            load_in_4bit=True,
572
            attn_implementation="flash_attention_2",
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
        )
        input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
        generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
        self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())

        # Assisted generation
        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 2
        assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
        generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
        self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())

        del assistant_model
        del model
        backend_empty_cache(torch_device)
        gc.collect()
589

590
591
592
593
594
595
596
    @slow
    @require_torch_sdpa
    def test_model_7b_long_prompt_sdpa(self):
        EXPECTED_OUTPUT_TOKEN_IDS = [306, 338]
        # An input with 4097 tokens that is above the size of the sliding window
        input_ids = [1] + [306, 338] * 2048
        model = MistralForCausalLM.from_pretrained(
597
            "mistralai/Mistral-7B-v0.1", device_map="auto", attn_implementation="sdpa", torch_dtype=torch.float16
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
        )
        input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
        generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
        self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())

        # Assisted generation
        assistant_model = model
        assistant_model.generation_config.num_assistant_tokens = 2
        assistant_model.generation_config.num_assistant_tokens_schedule = "constant"
        generated_ids = model.generate(input_ids, max_new_tokens=4, temperature=0)
        self.assertEqual(EXPECTED_OUTPUT_TOKEN_IDS, generated_ids[0][-2:].tolist())

        del assistant_model

        backend_empty_cache(torch_device)
        gc.collect()

        EXPECTED_TEXT_COMPLETION = """My favourite condiment is 100% ketchup. I love it on everything. I鈥檓 not a big"""
        prompt = "My favourite condiment is "
        tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False)

        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)

        # greedy generation outputs
        generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
        text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION, text)

626
627
    @slow
    def test_speculative_generation(self):
628
629
630
631
        EXPECTED_TEXT_COMPLETION = {
            7: "My favourite condiment is 100% Sriracha. I love the heat, the tang and the fact costs",
            8: "My favourite condiment is 100% Sriracha. I love the heat, the sweetness, the tang",
        }
632
633
634
635
636
637
638
639
640
641
642
643
644
        prompt = "My favourite condiment is "
        tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False)
        model = MistralForCausalLM.from_pretrained(
            "mistralai/Mistral-7B-v0.1", device_map="auto", torch_dtype=torch.float16
        )
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)

        # greedy generation outputs
        set_seed(0)
        generated_ids = model.generate(
            input_ids, max_new_tokens=20, do_sample=True, temperature=0.3, assistant_model=model
        )
        text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
645
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], text)
646
647
648
649

        del model
        backend_empty_cache(torch_device)
        gc.collect()
650

651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
    @slow
    def test_compile_static_cache(self):
        # `torch==2.2` will throw an error on this test (as in other compilation tests), but torch==2.1.2 and torch>2.2
        # work as intended. See https://github.com/pytorch/pytorch/issues/121943
        if version.parse(torch.__version__) < version.parse("2.3.0"):
            self.skipTest("This test requires torch >= 2.3 to run.")

        NUM_TOKENS_TO_GENERATE = 40
        EXPECTED_TEXT_COMPLETION = {
            8: [
                "My favourite condiment is 100% ketchup. I love it on everything. "
                "I鈥檓 not a big fan of mustard, mayo, or relish. I鈥檓 not a fan of pickles"
            ],
            7: [
                "My favourite condiment is 100% ketchup. I love it on everything. "
                "I鈥檓 not a big fan of mustard, mayo, or relish. I鈥檓 not a fan of pickles"
            ],
        }

        prompts = ["My favourite condiment is "]
        tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False)
        tokenizer.pad_token = tokenizer.eos_token
        model = MistralForCausalLM.from_pretrained(
            "mistralai/Mistral-7B-v0.1", device_map="sequential", torch_dtype=torch.float16
        )
        inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device)

        # Dynamic Cache
        generated_ids = model.generate(**inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False)
        dynamic_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], dynamic_text)

        # Static Cache
        generated_ids = model.generate(
            **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
        )
        static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], static_text)

        # Sliding Window Cache
        generated_ids = model.generate(
            **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="sliding_window"
        )
        static_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], static_text)

        # Static Cache + compile
        forward_function = model.forward
        model.forward = torch.compile(forward_function, mode="reduce-overhead", fullgraph=True)
        generated_ids = model.generate(
            **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="static"
        )
        static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], static_compiled_text)

        # Sliding Window Cache + compile
        torch._dynamo.reset()
        model.forward = torch.compile(forward_function, mode="reduce-overhead", fullgraph=True)
        generated_ids = model.generate(
            **inputs, max_new_tokens=NUM_TOKENS_TO_GENERATE, do_sample=False, cache_implementation="sliding_window"
        )
        static_compiled_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION[self.cuda_compute_capability_major_version], static_compiled_text)

        del model
        backend_empty_cache(torch_device)
        gc.collect()

719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

@slow
@require_torch_gpu
class Mask4DTestHard(unittest.TestCase):
    def tearDown(self):
        gc.collect()
        torch.cuda.empty_cache()

    def setUp(self):
        model_name = "mistralai/Mistral-7B-v0.1"
        self.model_dtype = torch.float32
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
        self.model = MistralForCausalLM.from_pretrained(model_name, torch_dtype=self.model_dtype).to(torch_device)

    def get_test_data(self):
        template = "my favorite {}"
        items = ("pet is a", "artist plays a", "name is L")  # same number of tokens in each item

        batch_separate = [template.format(x) for x in items]  # 3 separate lines
        batch_shared_prefix = template.format(" ".join(items))  # 1 line with options concatenated

        input_ids = self.tokenizer(batch_separate, return_tensors="pt").input_ids.to(torch_device)
        input_ids_shared_prefix = self.tokenizer(batch_shared_prefix, return_tensors="pt").input_ids.to(torch_device)

        mask_shared_prefix = torch.tensor(
            [
                [
                    [
                        [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0],
                        [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0],
                        [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0],
                        [1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1],
                    ]
                ]
            ],
            device=torch_device,
        )

        position_ids = torch.arange(input_ids.shape[1]).tile(input_ids.shape[0], 1).to(torch_device)

        # building custom positions ids based on custom mask
        position_ids_shared_prefix = (mask_shared_prefix.sum(dim=-1) - 1).reshape(1, -1)
        # effectively: position_ids_shared_prefix = torch.tensor([[0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5]]).to(device)

        # inverting the mask
        min_dtype = torch.finfo(self.model_dtype).min
        mask_shared_prefix = (mask_shared_prefix.eq(0.0)).to(dtype=self.model_dtype) * min_dtype

        return input_ids, position_ids, input_ids_shared_prefix, mask_shared_prefix, position_ids_shared_prefix

    def test_stacked_causal_mask(self):
        (
            input_ids,
            position_ids,
            input_ids_shared_prefix,
            mask_shared_prefix,
            position_ids_shared_prefix,
        ) = self.get_test_data()

        # regular batch
        logits = self.model.forward(input_ids, position_ids=position_ids).logits
        logits_last = logits[:, -1, :]  # last tokens in each batch line
        decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]

        # single forward run with 4D custom mask
        logits_shared_prefix = self.model.forward(
            input_ids_shared_prefix, attention_mask=mask_shared_prefix, position_ids=position_ids_shared_prefix
        ).logits
        logits_shared_prefix_last = logits_shared_prefix[
            0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1], :
        ]  # last three tokens
        decoded_shared_prefix = [self.tokenizer.decode(t) for t in logits_shared_prefix_last.argmax(dim=-1)]

        self.assertEqual(decoded, decoded_shared_prefix)

    def test_partial_stacked_causal_mask(self):
        # Same as the test above, but the input is passed in two groups. It tests that we can pass partial 4D attention masks

        (
            input_ids,
            position_ids,
            input_ids_shared_prefix,
            mask_shared_prefix,
            position_ids_shared_prefix,
        ) = self.get_test_data()

        # regular batch
        logits = self.model.forward(input_ids, position_ids=position_ids).logits
        logits_last = logits[:, -1, :]  # last tokens in each batch line
        decoded = [self.tokenizer.decode(t) for t in logits_last.argmax(dim=-1)]

        # 2 forward runs with custom 4D masks
        part_a = 3  # split point

        input_1a = input_ids_shared_prefix[:, :part_a]
        position_ids_1a = position_ids_shared_prefix[:, :part_a]
        mask_1a = mask_shared_prefix[:, :, :part_a, :part_a]

        outs_1a = self.model.forward(input_1a, attention_mask=mask_1a, position_ids=position_ids_1a)
        past_key_values_a = outs_1a["past_key_values"]

        # Case 1: we pass a 4D attention mask regarding the current sequence length (i.e. [..., seq_len, full_len])
        input_1b = input_ids_shared_prefix[:, part_a:]
        position_ids_1b = position_ids_shared_prefix[:, part_a:]
        mask_1b = mask_shared_prefix[:, :, part_a:, :]
        outs_1b = self.model.forward(
            input_1b, attention_mask=mask_1b, position_ids=position_ids_1b, past_key_values=past_key_values_a
        )
        decoded_1b = [
            self.tokenizer.decode(t)
            for t in outs_1b.logits.argmax(-1)[
                0, torch.where(position_ids_shared_prefix == position_ids_shared_prefix.max())[1] - part_a
            ]
        ]
        self.assertEqual(decoded, decoded_1b)