test_modeling_mistral.py 19.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Mistral model. """


18
import gc
19
import tempfile
20
21
import unittest

Yih-Dar's avatar
Yih-Dar committed
22
import pytest
23

24
from transformers import AutoTokenizer, MistralConfig, is_torch_available
25
26
27
28
29
30
31
32
from transformers.testing_utils import (
    backend_empty_cache,
    require_flash_attn,
    require_torch,
    require_torch_gpu,
    slow,
    torch_device,
)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import (
        MistralForCausalLM,
        MistralForSequenceClassification,
        MistralModel,
    )


class MistralModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_input_mask=True,
        use_token_type_ids=False,
        use_labels=True,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=2,
        num_attention_heads=4,
        num_key_value_heads=2,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=512,
        type_vocab_size=16,
        type_sequence_label_size=2,
        initializer_range=0.02,
        num_labels=3,
        num_choices=4,
        pad_token_id=0,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_input_mask = use_input_mask
        self.use_token_type_ids = use_token_type_ids
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.num_choices = num_choices
        self.pad_token_id = pad_token_id
        self.scope = scope

103
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = random_attention_mask([self.batch_size, self.seq_length])

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = self.get_config()

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def get_config(self):
        return MistralConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            num_key_value_heads=self.num_key_value_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            is_decoder=False,
            initializer_range=self.initializer_range,
            pad_token_id=self.pad_token_id,
        )

145
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Mistral
146
147
148
149
150
151
152
153
154
155
    def create_and_check_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = MistralModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask)
        result = model(input_ids)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

156
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Mistral
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def create_and_check_model_as_decoder(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.add_cross_attention = True
        model = MistralModel(config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
        result = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
        )
        result = model(input_ids, attention_mask=input_mask)
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))

187
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Mistral
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    def create_and_check_for_causal_lm(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        model = MistralForCausalLM(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=input_mask, labels=token_labels)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))

206
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Mistral
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    def create_and_check_decoder_model_past_large_inputs(
        self,
        config,
        input_ids,
        token_type_ids,
        input_mask,
        sequence_labels,
        token_labels,
        choice_labels,
        encoder_hidden_states,
        encoder_attention_mask,
    ):
        config.is_decoder = True
        config.add_cross_attention = True
        model = MistralForCausalLM(config=config)
        model.to(torch_device)
        model.eval()

        # first forward pass
        outputs = model(
            input_ids,
            attention_mask=input_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=True,
        )
        past_key_values = outputs.past_key_values

        # create hypothetical multiple next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
        next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)

        output_from_no_past = model(
            next_input_ids,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_hidden_states=True,
        )["hidden_states"][0]
        output_from_past = model(
            next_tokens,
            attention_mask=next_attention_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            past_key_values=past_key_values,
            output_hidden_states=True,
        )["hidden_states"][0]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()

        self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

269
    # Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
        return config, inputs_dict


@require_torch
class MistralModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (MistralModel, MistralForCausalLM, MistralForSequenceClassification) if is_torch_available() else ()
    )
    all_generative_model_classes = (MistralForCausalLM,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "feature-extraction": MistralModel,
            "text-classification": MistralForSequenceClassification,
            "text-generation": MistralForCausalLM,
            "zero-shot": MistralForSequenceClassification,
        }
        if is_torch_available()
        else {}
    )
    test_headmasking = False
    test_pruning = False

    def setUp(self):
        self.model_tester = MistralModelTester(self)
        self.config_tester = ConfigTester(self, config_class=MistralConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_model_various_embeddings(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        for type in ["absolute", "relative_key", "relative_key_query"]:
            config_and_inputs[0].position_embedding_type = type
            self.model_tester.create_and_check_model(*config_and_inputs)

    def test_Mistral_sequence_classification_model(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        print(config)
        config.num_labels = 3
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = MistralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_Mistral_sequence_classification_model_for_single_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "single_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
        model = MistralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    def test_Mistral_sequence_classification_model_for_multi_label(self):
        config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.num_labels = 3
        config.problem_type = "multi_label_classification"
        input_ids = input_dict["input_ids"]
        attention_mask = input_ids.ne(1).to(torch_device)
        sequence_labels = ids_tensor(
            [self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
        ).to(torch.float)
        model = MistralForSequenceClassification(config)
        model.to(torch_device)
        model.eval()
        result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
        self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))

    @unittest.skip("Mistral buffers include complex numbers, which breaks this test")
    def test_save_load_fast_init_from_base(self):
        pass

    @unittest.skip("Mistral uses GQA on all models so the KV cache is a non standard format")
    def test_past_key_values_format(self):
        pass

370
371
    @require_flash_attn
    @require_torch_gpu
Yih-Dar's avatar
Yih-Dar committed
372
    @pytest.mark.flash_attn_test
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
    @slow
    def test_flash_attn_2_generate_padding_right(self):
        import torch

        for model_class in self.all_generative_model_classes:
            config, _ = self.model_tester.prepare_config_and_inputs_for_common()
            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=False, low_cpu_mem_usage=True
                ).to(torch_device)

                dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
                dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)

                model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)

                model = model_class.from_pretrained(
                    tmpdirname, torch_dtype=torch.float16, use_flash_attention_2=True, low_cpu_mem_usage=True
                ).to(torch_device)

                with self.assertRaises(ValueError):
                    _ = model.generate(
                        dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
                    )

    @require_flash_attn
    @require_torch_gpu
Yih-Dar's avatar
Yih-Dar committed
403
    @pytest.mark.flash_attn_test
404
    @slow
405
    def test_flash_attn_2_generate_use_cache(self):
406
407
        import torch

408
409
410
411
412
413
414
415
416
417
418
419
        max_new_tokens = 30

        for model_class in self.all_generative_model_classes:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            dummy_input = inputs_dict[model_class.main_input_name]
            if dummy_input.dtype in [torch.float32, torch.bfloat16]:
                dummy_input = dummy_input.to(torch.float16)

            # make sure that all models have enough positions for generation
            if hasattr(config, "max_position_embeddings"):
                config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
420
421
422
423
424

            model = model_class(config)

            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
425
426
427
428

                dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
                # NOTE: Mistral apparently does not support right padding + use_cache with FA2.
                dummy_attention_mask[:, -1] = 1
429
430

                model = model_class.from_pretrained(
431
432
433
434
435
                    tmpdirname,
                    torch_dtype=torch.float16,
                    use_flash_attention_2=True,
                    low_cpu_mem_usage=True,
                ).to(torch_device)
436

437
438
                # Just test that a large cache works as expected
                _ = model.generate(
439
440
441
442
443
                    dummy_input,
                    attention_mask=dummy_attention_mask,
                    max_new_tokens=max_new_tokens,
                    do_sample=False,
                    use_cache=True,
444
                )
445

446
447
448
449
450
451
    @require_flash_attn
    @require_torch_gpu
    @pytest.mark.flash_attn_test
    @slow
    def test_flash_attn_2_inference_padding_right(self):
        self.skipTest("Mistral flash attention does not support right padding")
452

453
454
455
456
457
458
459

@require_torch
class MistralIntegrationTest(unittest.TestCase):
    @slow
    def test_model_7b_logits(self):
        input_ids = [1, 306, 4658, 278, 6593, 310, 2834, 338]
        model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto")
460
        input_ids = torch.tensor([input_ids]).to(model.model.embed_tokens.weight.device)
Yih-Dar's avatar
Yih-Dar committed
461
462
        with torch.no_grad():
            out = model(input_ids).logits.cpu()
463
464
465
466
        # Expected mean on dim = -1
        EXPECTED_MEAN = torch.tensor([[-2.5548, -2.5737, -3.0600, -2.5906, -2.8478, -2.8118, -2.9325, -2.7694]])
        torch.testing.assert_close(out.mean(-1), EXPECTED_MEAN, atol=1e-2, rtol=1e-2)
        # slicing logits[0, 0, 0:30]
467
        EXPECTED_SLICE = torch.tensor([-5.8781, -5.8616, -0.1052, -4.7200, -5.8781, -5.8774, -5.8773, -5.8777, -5.8781, -5.8780, -5.8781, -5.8779, -1.0787,  1.7583, -5.8779, -5.8780, -5.8783, -5.8778, -5.8776, -5.8781, -5.8784, -5.8778, -5.8778, -5.8777, -5.8779, -5.8778, -5.8776, -5.8780, -5.8779, -5.8781])  # fmt: skip
468
469
470
        print(out[0, 0, :30])
        torch.testing.assert_close(out[0, 0, :30], EXPECTED_SLICE, atol=1e-4, rtol=1e-4)

471
        del model
472
        backend_empty_cache(torch_device)
473
474
        gc.collect()

475
476
    @slow
    def test_model_7b_generation(self):
477
        EXPECTED_TEXT_COMPLETION = """My favourite condiment is 100% ketchup. I love it on everything. I鈥檓 not a big"""
478
479
        prompt = "My favourite condiment is "
        tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", use_fast=False)
480
        model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", device_map="auto")
Yih-Dar's avatar
Yih-Dar committed
481
        input_ids = tokenizer.encode(prompt, return_tensors="pt").to(model.model.embed_tokens.weight.device)
482
483
484
485
486

        # greedy generation outputs
        generated_ids = model.generate(input_ids, max_new_tokens=20, temperature=0)
        text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
        self.assertEqual(EXPECTED_TEXT_COMPLETION, text)
487
488

        del model
489
        backend_empty_cache(torch_device)
490
        gc.collect()