finetune_trainer.py 13.6 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Suraj Patil's avatar
Suraj Patil committed
16
17
18
19
import logging
import os
import sys
from dataclasses import dataclass, field
20
from typing import Optional
Suraj Patil's avatar
Suraj Patil committed
21

22
23
from seq2seq_trainer import Seq2SeqTrainer
from seq2seq_training_args import Seq2SeqTrainingArguments
24
25

import transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
28
29
30
31
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    HfArgumentParser,
    MBartTokenizer,
32
    MBartTokenizerFast,
Sylvain Gugger's avatar
Sylvain Gugger committed
33
34
    set_seed,
)
35
from transformers.trainer_utils import EvaluationStrategy, is_main_process
36
from transformers.training_args import ParallelMode
Suraj Patil's avatar
Suraj Patil committed
37
from utils import (
38
    Seq2SeqDataCollator,
Suraj Patil's avatar
Suraj Patil committed
39
40
    Seq2SeqDataset,
    assert_all_frozen,
41
    build_compute_metrics_fn,
42
    check_output_dir,
43
    freeze_embeds,
Suraj Patil's avatar
Suraj Patil committed
44
45
    freeze_params,
    lmap,
46
    save_json,
Suraj Patil's avatar
Suraj Patil committed
47
    use_task_specific_params,
48
    write_txt_file,
Suraj Patil's avatar
Suraj Patil committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
)


logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
71
72
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Suraj Patil's avatar
Suraj Patil committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    )
    freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."})
    freeze_embeds: bool = field(default=False, metadata={"help": "Whether  to freeze the embeddings."})


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
    )
    task: Optional[str] = field(
        default="summarization",
        metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
94
95
96
97
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Suraj Patil's avatar
Suraj Patil committed
98
99
        },
    )
100
    max_target_length: Optional[int] = field(
Suraj Patil's avatar
Suraj Patil committed
101
102
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
103
104
105
106
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Suraj Patil's avatar
Suraj Patil committed
107
108
        },
    )
109
    val_max_target_length: Optional[int] = field(
Suraj Patil's avatar
Suraj Patil committed
110
111
        default=142,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
112
113
114
115
116
117
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded. "
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
118
119
120
121
122
        },
    )
    test_max_target_length: Optional[int] = field(
        default=142,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
123
124
125
126
            "help": (
                "The maximum total sequence length for test target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Suraj Patil's avatar
Suraj Patil committed
127
128
129
130
131
132
133
134
        },
    )
    n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."})
    n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."})
    n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."})
    src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
    tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
    eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."})
135
136
137
138
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."},
    )
Suraj Patil's avatar
Suraj Patil committed
139
140


141
142
143
144
145
146
147
148
149
150
151
def handle_metrics(split, metrics, output_dir):
    """
    Log and save metrics

    Args:
    - split: one of train, val, test
    - metrics: metrics dict
    - output_dir: where to save the metrics
    """

    logger.info(f"***** {split} metrics *****")
152
153
    for key in sorted(metrics.keys()):
        logger.info(f"  {key} = {metrics[key]}")
154
155
156
    save_json(metrics, os.path.join(output_dir, f"{split}_results.json"))


Suraj Patil's avatar
Suraj Patil committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

171
    check_output_dir(training_args)
Suraj Patil's avatar
Suraj Patil committed
172
173
174

    # Setup logging
    logging.basicConfig(
175
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Suraj Patil's avatar
Suraj Patil committed
176
177
178
179
180
181
182
183
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
184
        bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED),
Suraj Patil's avatar
Suraj Patil committed
185
186
        training_args.fp16,
    )
187
188
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
189
190
191
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
Suraj Patil's avatar
Suraj Patil committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
207
208
209
210
211
212
213

    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        if getattr(training_args, p, None):
            assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute"
            setattr(config, p, getattr(training_args, p))

Suraj Patil's avatar
Suraj Patil committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=".ckpt" in model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
    )

    # use task specific params
    use_task_specific_params(model, data_args.task)

    # set num_beams for evaluation
229
230
    if data_args.eval_beams is None:
        data_args.eval_beams = model.config.num_beams
Suraj Patil's avatar
Suraj Patil committed
231
232

    # set decoder_start_token_id for MBart
233
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
234
235
236
        assert (
            data_args.tgt_lang is not None and data_args.src_lang is not None
        ), "mBart requires --tgt_lang and --src_lang"
237
238
239
240
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang)
Suraj Patil's avatar
Suraj Patil committed
241
242
243
244
245
246
247

    if model_args.freeze_embeds:
        freeze_embeds(model)
    if model_args.freeze_encoder:
        freeze_params(model.get_encoder())
        assert_all_frozen(model.get_encoder())

248
    dataset_class = Seq2SeqDataset
Suraj Patil's avatar
Suraj Patil committed
249
250
251
252
253
254
255
256

    # Get datasets
    train_dataset = (
        dataset_class(
            tokenizer,
            type_path="train",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_train,
257
            max_target_length=data_args.max_target_length,
Suraj Patil's avatar
Suraj Patil committed
258
259
260
261
262
263
264
265
266
267
268
269
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        dataset_class(
            tokenizer,
            type_path="val",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_val,
270
            max_target_length=data_args.val_max_target_length,
Suraj Patil's avatar
Suraj Patil committed
271
272
273
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
274
        if training_args.do_eval or training_args.eval_strategy != EvaluationStrategy.NO
Suraj Patil's avatar
Suraj Patil committed
275
276
277
278
279
280
281
282
        else None
    )
    test_dataset = (
        dataset_class(
            tokenizer,
            type_path="test",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_test,
283
            max_target_length=data_args.test_max_target_length,
Suraj Patil's avatar
Suraj Patil committed
284
285
286
287
288
289
290
291
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_predict
        else None
    )

    # Initialize our Trainer
292
293
294
    compute_metrics_fn = (
        build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None
    )
Suraj Patil's avatar
Suraj Patil committed
295
296
297
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
298
        data_args=data_args,
Suraj Patil's avatar
Suraj Patil committed
299
300
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
301
302
303
        data_collator=Seq2SeqDataCollator(
            tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores
        ),
304
        compute_metrics=compute_metrics_fn,
Sylvain Gugger's avatar
Sylvain Gugger committed
305
        tokenizer=tokenizer,
Suraj Patil's avatar
Suraj Patil committed
306
307
    )

308
    all_metrics = {}
Suraj Patil's avatar
Suraj Patil committed
309
310
    # Training
    if training_args.do_train:
311
312
        logger.info("*** Train ***")

313
        train_result = trainer.train(
Suraj Patil's avatar
Suraj Patil committed
314
315
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
316
317
        metrics = train_result.metrics
        metrics["train_n_objs"] = data_args.n_train
318
319
320

        trainer.save_model()  # this also saves the tokenizer

Suraj Patil's avatar
Suraj Patil committed
321
        if trainer.is_world_process_zero():
322
323
324
325
            handle_metrics("train", metrics, training_args.output_dir)
            all_metrics.update(metrics)

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
326
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
327
328
329

            # For convenience, we also re-save the tokenizer to the same directory,
            # so that you can share your model easily on huggingface.co/models =)
Suraj Patil's avatar
Suraj Patil committed
330
331
332
333
334
335
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

336
        metrics = trainer.evaluate(metric_key_prefix="val")
337
        metrics["val_n_objs"] = data_args.n_val
338
        metrics["val_loss"] = round(metrics["val_loss"], 4)
Suraj Patil's avatar
Suraj Patil committed
339
340

        if trainer.is_world_process_zero():
341
342
            handle_metrics("val", metrics, training_args.output_dir)
            all_metrics.update(metrics)
Suraj Patil's avatar
Suraj Patil committed
343
344

    if training_args.do_predict:
345
        logger.info("*** Predict ***")
Suraj Patil's avatar
Suraj Patil committed
346

347
        test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test")
348
        metrics = test_output.metrics
349
        metrics["test_n_objs"] = data_args.n_test
Suraj Patil's avatar
Suraj Patil committed
350
351

        if trainer.is_world_process_zero():
352
353
354
            metrics["test_loss"] = round(metrics["test_loss"], 4)
            handle_metrics("test", metrics, training_args.output_dir)
            all_metrics.update(metrics)
Suraj Patil's avatar
Suraj Patil committed
355
356

            if training_args.predict_with_generate:
357
358
359
                test_preds = tokenizer.batch_decode(
                    test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
Suraj Patil's avatar
Suraj Patil committed
360
                test_preds = lmap(str.strip, test_preds)
361
                write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt"))
Suraj Patil's avatar
Suraj Patil committed
362

363
    if trainer.is_world_process_zero():
364
365
366
        save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json"))

    return all_metrics
Suraj Patil's avatar
Suraj Patil committed
367
368
369
370
371
372
373
374
375


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()