finetune_trainer.py 13.6 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Suraj Patil's avatar
Suraj Patil committed
16
17
18
19
import logging
import os
import sys
from dataclasses import dataclass, field
20
from typing import Optional
Suraj Patil's avatar
Suraj Patil committed
21

22
import transformers
23
24
from seq2seq_trainer import Seq2SeqTrainer
from seq2seq_training_args import Seq2SeqTrainingArguments
Sylvain Gugger's avatar
Sylvain Gugger committed
25
26
27
28
29
30
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    HfArgumentParser,
    MBartTokenizer,
31
    MBartTokenizerFast,
Sylvain Gugger's avatar
Sylvain Gugger committed
32
33
    set_seed,
)
34
from transformers.trainer_utils import EvaluationStrategy, is_main_process
35
from transformers.training_args import ParallelMode
Suraj Patil's avatar
Suraj Patil committed
36
from utils import (
37
    Seq2SeqDataCollator,
Suraj Patil's avatar
Suraj Patil committed
38
39
    Seq2SeqDataset,
    assert_all_frozen,
40
    build_compute_metrics_fn,
41
    check_output_dir,
42
    freeze_embeds,
Suraj Patil's avatar
Suraj Patil committed
43
44
    freeze_params,
    lmap,
45
    save_json,
Suraj Patil's avatar
Suraj Patil committed
46
    use_task_specific_params,
47
    write_txt_file,
Suraj Patil's avatar
Suraj Patil committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
)


logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
70
71
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Suraj Patil's avatar
Suraj Patil committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
    )
    freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."})
    freeze_embeds: bool = field(default=False, metadata={"help": "Whether  to freeze the embeddings."})


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
    )
    task: Optional[str] = field(
        default="summarization",
        metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
93
94
95
96
            "help": (
                "The maximum total input sequence length after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Suraj Patil's avatar
Suraj Patil committed
97
98
        },
    )
99
    max_target_length: Optional[int] = field(
Suraj Patil's avatar
Suraj Patil committed
100
101
        default=128,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
102
103
104
105
            "help": (
                "The maximum total sequence length for target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Suraj Patil's avatar
Suraj Patil committed
106
107
        },
    )
108
    val_max_target_length: Optional[int] = field(
Suraj Patil's avatar
Suraj Patil committed
109
110
        default=142,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
114
115
116
            "help": (
                "The maximum total sequence length for validation target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded. "
                "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
                "during ``evaluate`` and ``predict``."
            )
117
118
119
120
121
        },
    )
    test_max_target_length: Optional[int] = field(
        default=142,
        metadata={
Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
125
            "help": (
                "The maximum total sequence length for test target text after tokenization. Sequences longer "
                "than this will be truncated, sequences shorter will be padded."
            )
Suraj Patil's avatar
Suraj Patil committed
126
127
128
129
130
131
132
133
        },
    )
    n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."})
    n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."})
    n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."})
    src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
    tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
    eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."})
134
135
136
137
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."},
    )
Suraj Patil's avatar
Suraj Patil committed
138
139


140
141
142
143
144
145
146
147
148
149
150
def handle_metrics(split, metrics, output_dir):
    """
    Log and save metrics

    Args:
    - split: one of train, val, test
    - metrics: metrics dict
    - output_dir: where to save the metrics
    """

    logger.info(f"***** {split} metrics *****")
151
152
    for key in sorted(metrics.keys()):
        logger.info(f"  {key} = {metrics[key]}")
153
154
155
    save_json(metrics, os.path.join(output_dir, f"{split}_results.json"))


Suraj Patil's avatar
Suraj Patil committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

170
    check_output_dir(training_args)
Suraj Patil's avatar
Suraj Patil committed
171
172
173

    # Setup logging
    logging.basicConfig(
174
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Suraj Patil's avatar
Suraj Patil committed
175
176
177
178
179
180
181
182
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
183
        bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED),
Suraj Patil's avatar
Suraj Patil committed
184
185
        training_args.fp16,
    )
186
187
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
188
189
190
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
Suraj Patil's avatar
Suraj Patil committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
206
207
208
209
210
211
212

    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        if getattr(training_args, p, None):
            assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute"
            setattr(config, p, getattr(training_args, p))

Suraj Patil's avatar
Suraj Patil committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=".ckpt" in model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
    )

    # use task specific params
    use_task_specific_params(model, data_args.task)

    # set num_beams for evaluation
228
229
    if data_args.eval_beams is None:
        data_args.eval_beams = model.config.num_beams
Suraj Patil's avatar
Suraj Patil committed
230
231

    # set decoder_start_token_id for MBart
232
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
233
234
235
        assert (
            data_args.tgt_lang is not None and data_args.src_lang is not None
        ), "mBart requires --tgt_lang and --src_lang"
236
237
238
239
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang)
Suraj Patil's avatar
Suraj Patil committed
240
241
242
243
244
245
246

    if model_args.freeze_embeds:
        freeze_embeds(model)
    if model_args.freeze_encoder:
        freeze_params(model.get_encoder())
        assert_all_frozen(model.get_encoder())

247
    dataset_class = Seq2SeqDataset
Suraj Patil's avatar
Suraj Patil committed
248
249
250
251
252
253
254
255

    # Get datasets
    train_dataset = (
        dataset_class(
            tokenizer,
            type_path="train",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_train,
256
            max_target_length=data_args.max_target_length,
Suraj Patil's avatar
Suraj Patil committed
257
258
259
260
261
262
263
264
265
266
267
268
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        dataset_class(
            tokenizer,
            type_path="val",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_val,
269
            max_target_length=data_args.val_max_target_length,
Suraj Patil's avatar
Suraj Patil committed
270
271
272
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
273
        if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
Suraj Patil's avatar
Suraj Patil committed
274
275
276
277
278
279
280
281
        else None
    )
    test_dataset = (
        dataset_class(
            tokenizer,
            type_path="test",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_test,
282
            max_target_length=data_args.test_max_target_length,
Suraj Patil's avatar
Suraj Patil committed
283
284
285
286
287
288
289
290
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_predict
        else None
    )

    # Initialize our Trainer
291
292
293
    compute_metrics_fn = (
        build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None
    )
Suraj Patil's avatar
Suraj Patil committed
294
295
296
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
297
        data_args=data_args,
Suraj Patil's avatar
Suraj Patil committed
298
299
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
300
301
302
        data_collator=Seq2SeqDataCollator(
            tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores
        ),
303
        compute_metrics=compute_metrics_fn,
Sylvain Gugger's avatar
Sylvain Gugger committed
304
        tokenizer=tokenizer,
Suraj Patil's avatar
Suraj Patil committed
305
306
    )

307
    all_metrics = {}
Suraj Patil's avatar
Suraj Patil committed
308
309
    # Training
    if training_args.do_train:
310
311
        logger.info("*** Train ***")

312
        train_result = trainer.train(
Suraj Patil's avatar
Suraj Patil committed
313
314
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
315
316
        metrics = train_result.metrics
        metrics["train_n_objs"] = data_args.n_train
317
318
319

        trainer.save_model()  # this also saves the tokenizer

Suraj Patil's avatar
Suraj Patil committed
320
        if trainer.is_world_process_zero():
321
322
323
324
            handle_metrics("train", metrics, training_args.output_dir)
            all_metrics.update(metrics)

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
325
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
326
327
328

            # For convenience, we also re-save the tokenizer to the same directory,
            # so that you can share your model easily on huggingface.co/models =)
Suraj Patil's avatar
Suraj Patil committed
329
330
331
332
333
334
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

335
        metrics = trainer.evaluate(metric_key_prefix="val")
336
        metrics["val_n_objs"] = data_args.n_val
337
        metrics["val_loss"] = round(metrics["val_loss"], 4)
Suraj Patil's avatar
Suraj Patil committed
338
339

        if trainer.is_world_process_zero():
340
341
342

            handle_metrics("val", metrics, training_args.output_dir)
            all_metrics.update(metrics)
Suraj Patil's avatar
Suraj Patil committed
343
344

    if training_args.do_predict:
345
        logger.info("*** Predict ***")
Suraj Patil's avatar
Suraj Patil committed
346

347
        test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test")
348
        metrics = test_output.metrics
349
        metrics["test_n_objs"] = data_args.n_test
Suraj Patil's avatar
Suraj Patil committed
350
351

        if trainer.is_world_process_zero():
352
353
354
            metrics["test_loss"] = round(metrics["test_loss"], 4)
            handle_metrics("test", metrics, training_args.output_dir)
            all_metrics.update(metrics)
Suraj Patil's avatar
Suraj Patil committed
355
356

            if training_args.predict_with_generate:
357
358
359
                test_preds = tokenizer.batch_decode(
                    test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
Suraj Patil's avatar
Suraj Patil committed
360
                test_preds = lmap(str.strip, test_preds)
361
                write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt"))
Suraj Patil's avatar
Suraj Patil committed
362

363
    if trainer.is_world_process_zero():
364
365
366
        save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json"))

    return all_metrics
Suraj Patil's avatar
Suraj Patil committed
367
368
369
370
371
372
373
374
375


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()