test_modeling_dpt.py 13.7 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DPT model. """


import unittest

from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

Yih-Dar's avatar
Yih-Dar committed
24
from ...test_configuration_common import ConfigTester
25
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
26
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
27
28
29
30
31
32


if is_torch_available():
    import torch
    from torch import nn

33
34
    from transformers import DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
    from transformers.models.auto.modeling_auto import MODEL_MAPPING_NAMES
NielsRogge's avatar
NielsRogge committed
35
36
37
38
39


if is_vision_available():
    from PIL import Image

40
    from transformers import DPTImageProcessor
NielsRogge's avatar
NielsRogge committed
41
42
43
44
45
46
47
48
49
50
51
52
53


class DPTModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        image_size=32,
        patch_size=16,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
54
        num_hidden_layers=2,
NielsRogge's avatar
NielsRogge committed
55
56
57
58
59
60
61
62
        backbone_out_indices=[0, 1, 2, 3],
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        num_labels=3,
63
        neck_hidden_sizes=[16, 32],
64
        is_hybrid=False,
NielsRogge's avatar
NielsRogge committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.backbone_out_indices = backbone_out_indices
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope
85
        self.is_hybrid = is_hybrid
86
        self.neck_hidden_sizes = neck_hidden_sizes
NielsRogge's avatar
NielsRogge committed
87
        # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
88
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
89
        self.seq_length = num_patches + 1
NielsRogge's avatar
NielsRogge committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DPTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
108
            fusion_hidden_size=self.hidden_size,
NielsRogge's avatar
NielsRogge committed
109
110
111
112
113
114
115
116
117
            num_hidden_layers=self.num_hidden_layers,
            backbone_out_indices=self.backbone_out_indices,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
118
            is_hybrid=self.is_hybrid,
119
            neck_hidden_sizes=self.neck_hidden_sizes,
NielsRogge's avatar
NielsRogge committed
120
121
122
123
124
125
126
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = DPTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
127
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

    def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = DPTForDepthEstimation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))

    def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = DPTForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
155
class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
156
157
158
159
160
161
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
162
163
164
    pipeline_model_mapping = (
        {
            "depth-estimation": DPTForDepthEstimation,
165
            "image-feature-extraction": DPTModel,
166
167
168
169
170
            "image-segmentation": DPTForSemanticSegmentation,
        }
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
171
172
173
174
175
176
177
178
179
180
181
182

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
183
    @unittest.skip(reason="DPT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_depth_estimation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)

    def test_for_semantic_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)

    def test_training(self):
        for model_class in self.all_model_classes:
            if model_class.__name__ == "DPTForDepthEstimation":
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

216
            if model_class.__name__ in MODEL_MAPPING_NAMES.values():
NielsRogge's avatar
NielsRogge committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
                continue

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        for model_class in self.all_model_classes:
            if model_class.__name__ == "DPTForDepthEstimation":
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

235
            if model_class.__name__ in MODEL_MAPPING_NAMES.values() or not model_class.supports_gradient_checkpointing:
NielsRogge's avatar
NielsRogge committed
236
237
238
239
240
241
242
243
244
                continue
            model = model_class(config)
            model.to(torch_device)
            model.gradient_checkpointing_enable()
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

245
246
247
248
249
250
251
252
253
254
255
256
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            # Skip the check for the backbone
            backbone_params = []
            for name, module in model.named_modules():
                if module.__class__.__name__ == "DPTViTHybridEmbeddings":
                    backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()]
                    break

            for name, param in model.named_parameters():
                if param.requires_grad:
                    if name in backbone_params:
                        continue
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

NielsRogge's avatar
NielsRogge committed
280
281
    @slow
    def test_model_from_pretrained(self):
282
283
284
        model_name = "Intel/dpt-large"
        model = DPTModel.from_pretrained(model_name)
        self.assertIsNotNone(model)
NielsRogge's avatar
NielsRogge committed
285
286
287
288
289
290
291
292
293
294
295
296
297


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
@slow
class DPTModelIntegrationTest(unittest.TestCase):
    def test_inference_depth_estimation(self):
298
        image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
NielsRogge's avatar
NielsRogge committed
299
300
301
        model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(torch_device)

        image = prepare_img()
302
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)
            predicted_depth = outputs.predicted_depth

        # verify the predicted depth
        expected_shape = torch.Size((1, 384, 384))
        self.assertEqual(predicted_depth.shape, expected_shape)

        expected_slice = torch.tensor(
            [[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))

    def test_inference_semantic_segmentation(self):
320
        image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large-ade")
NielsRogge's avatar
NielsRogge committed
321
322
323
        model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device)

        image = prepare_img()
324
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 150, 480, 480))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
339
340

    def test_post_processing_semantic_segmentation(self):
341
        image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large-ade")
342
343
344
        model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device)

        image = prepare_img()
345
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
346
347
348
349
350
351
352

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        outputs.logits = outputs.logits.detach().cpu()

353
        segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
354
355
356
        expected_shape = torch.Size((500, 300))
        self.assertEqual(segmentation[0].shape, expected_shape)

357
        segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
358
359
        expected_shape = torch.Size((480, 480))
        self.assertEqual(segmentation[0].shape, expected_shape)