"tests/models/auto/test_tokenization_auto.py" did not exist on "cd9274d0107079cb4ba5a8d00bba2fcd8236c220"
test_modeling_dpt.py 12.2 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DPT model. """


import inspect
import unittest

from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

Yih-Dar's avatar
Yih-Dar committed
26
27
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
NielsRogge's avatar
NielsRogge committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63


if is_torch_available():
    import torch
    from torch import nn

    from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
    from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

    from transformers import DPTFeatureExtractor


class DPTModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        image_size=32,
        patch_size=16,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=4,
        backbone_out_indices=[0, 1, 2, 3],
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        num_labels=3,
64
        is_hybrid=False,
NielsRogge's avatar
NielsRogge committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.backbone_out_indices = backbone_out_indices
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope
85
        self.is_hybrid = is_hybrid
NielsRogge's avatar
NielsRogge committed
86
        # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
87
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
88
        self.seq_length = num_patches + 1
NielsRogge's avatar
NielsRogge committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DPTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            backbone_out_indices=self.backbone_out_indices,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
116
            is_hybrid=self.is_hybrid,
NielsRogge's avatar
NielsRogge committed
117
118
119
120
121
122
123
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = DPTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
124
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

    def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = DPTForDepthEstimation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))

    def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = DPTForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
class DPTModelTest(ModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
171
    @unittest.skip(reason="DPT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_depth_estimation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)

    def test_for_semantic_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)

    def test_training(self):
        for model_class in self.all_model_classes:
            if model_class.__name__ == "DPTForDepthEstimation":
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

            if model_class in get_values(MODEL_MAPPING):
                continue

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        for model_class in self.all_model_classes:
            if model_class.__name__ == "DPTForDepthEstimation":
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
                continue
            model = model_class(config)
            model.to(torch_device)
            model.gradient_checkpointing_enable()
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    @slow
    def test_model_from_pretrained(self):
        for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DPTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
@slow
class DPTModelIntegrationTest(unittest.TestCase):
    def test_inference_depth_estimation(self):
        feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
        model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(torch_device)

        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)
            predicted_depth = outputs.predicted_depth

        # verify the predicted depth
        expected_shape = torch.Size((1, 384, 384))
        self.assertEqual(predicted_depth.shape, expected_shape)

        expected_slice = torch.tensor(
            [[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))

    def test_inference_semantic_segmentation(self):
        feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large-ade")
        model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device)

        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 150, 480, 480))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

    def test_post_processing_semantic_segmentation(self):
        feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large-ade")
        model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device)

        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="pt").to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        outputs.logits = outputs.logits.detach().cpu()

        segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
        expected_shape = torch.Size((500, 300))
        self.assertEqual(segmentation[0].shape, expected_shape)

        segmentation = feature_extractor.post_process_semantic_segmentation(outputs=outputs)
        expected_shape = torch.Size((480, 480))
        self.assertEqual(segmentation[0].shape, expected_shape)