"vscode:/vscode.git/clone" did not exist on "c3d6f33918bd67fd624865c3431dc2977d15450a"
finetune_trainer.py 13.6 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Suraj Patil's avatar
Suraj Patil committed
16
17
18
19
import logging
import os
import sys
from dataclasses import dataclass, field
20
from typing import Optional
Suraj Patil's avatar
Suraj Patil committed
21

22
import transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
23
24
25
26
27
28
from transformers import (
    AutoConfig,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    HfArgumentParser,
    MBartTokenizer,
29
    MBartTokenizerFast,
Sylvain Gugger's avatar
Sylvain Gugger committed
30
31
32
33
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    set_seed,
)
34
from transformers.trainer_utils import EvaluationStrategy, is_main_process
35
from transformers.training_args import ParallelMode
Suraj Patil's avatar
Suraj Patil committed
36
from utils import (
37
    Seq2SeqDataCollator,
Suraj Patil's avatar
Suraj Patil committed
38
39
    Seq2SeqDataset,
    assert_all_frozen,
40
    build_compute_metrics_fn,
41
    check_output_dir,
42
    freeze_embeds,
Suraj Patil's avatar
Suraj Patil committed
43
44
    freeze_params,
    lmap,
45
    save_json,
Suraj Patil's avatar
Suraj Patil committed
46
    use_task_specific_params,
47
    write_txt_file,
Suraj Patil's avatar
Suraj Patil committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
)


logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
70
71
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Suraj Patil's avatar
Suraj Patil committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    )
    freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."})
    freeze_embeds: bool = field(default=False, metadata={"help": "Whether  to freeze the embeddings."})


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
    )
    task: Optional[str] = field(
        default="summarization",
        metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
97
    max_target_length: Optional[int] = field(
Suraj Patil's avatar
Suraj Patil committed
98
99
100
101
102
103
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
104
    val_max_target_length: Optional[int] = field(
Suraj Patil's avatar
Suraj Patil committed
105
106
107
        default=142,
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
108
109
110
111
112
113
114
115
116
            "than this will be truncated, sequences shorter will be padded. "
            "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
            "during ``evaluate`` and ``predict``."
        },
    )
    test_max_target_length: Optional[int] = field(
        default=142,
        metadata={
            "help": "The maximum total sequence length for test target text after tokenization. Sequences longer "
Suraj Patil's avatar
Suraj Patil committed
117
118
119
120
121
122
123
124
125
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."})
    n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."})
    n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."})
    src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
    tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
    eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."})
126
127
128
129
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."},
    )
Suraj Patil's avatar
Suraj Patil committed
130
131


132
133
134
135
136
137
138
139
140
141
142
def handle_metrics(split, metrics, output_dir):
    """
    Log and save metrics

    Args:
    - split: one of train, val, test
    - metrics: metrics dict
    - output_dir: where to save the metrics
    """

    logger.info(f"***** {split} metrics *****")
143
144
    for key in sorted(metrics.keys()):
        logger.info(f"  {key} = {metrics[key]}")
145
146
147
    save_json(metrics, os.path.join(output_dir, f"{split}_results.json"))


Suraj Patil's avatar
Suraj Patil committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

162
    check_output_dir(training_args)
Suraj Patil's avatar
Suraj Patil committed
163
164
165
166
167
168
169
170
171
172
173
174

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
175
        bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED),
Suraj Patil's avatar
Suraj Patil committed
176
177
        training_args.fp16,
    )
178
179
180
181
182
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Suraj Patil's avatar
Suraj Patil committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
198
199
200
201
202
203
204

    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        if getattr(training_args, p, None):
            assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute"
            setattr(config, p, getattr(training_args, p))

Suraj Patil's avatar
Suraj Patil committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=".ckpt" in model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
    )

    # use task specific params
    use_task_specific_params(model, data_args.task)

    # set num_beams for evaluation
220
221
    if data_args.eval_beams is None:
        data_args.eval_beams = model.config.num_beams
Suraj Patil's avatar
Suraj Patil committed
222
223

    # set decoder_start_token_id for MBart
224
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
225
226
227
        assert (
            data_args.tgt_lang is not None and data_args.src_lang is not None
        ), "mBart requires --tgt_lang and --src_lang"
228
229
230
231
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang)
Suraj Patil's avatar
Suraj Patil committed
232
233
234
235
236
237
238

    if model_args.freeze_embeds:
        freeze_embeds(model)
    if model_args.freeze_encoder:
        freeze_params(model.get_encoder())
        assert_all_frozen(model.get_encoder())

239
    dataset_class = Seq2SeqDataset
Suraj Patil's avatar
Suraj Patil committed
240
241
242
243
244
245
246
247

    # Get datasets
    train_dataset = (
        dataset_class(
            tokenizer,
            type_path="train",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_train,
248
            max_target_length=data_args.max_target_length,
Suraj Patil's avatar
Suraj Patil committed
249
250
251
252
253
254
255
256
257
258
259
260
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        dataset_class(
            tokenizer,
            type_path="val",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_val,
261
            max_target_length=data_args.val_max_target_length,
Suraj Patil's avatar
Suraj Patil committed
262
263
264
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
265
        if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
Suraj Patil's avatar
Suraj Patil committed
266
267
268
269
270
271
272
273
        else None
    )
    test_dataset = (
        dataset_class(
            tokenizer,
            type_path="test",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_test,
274
            max_target_length=data_args.test_max_target_length,
Suraj Patil's avatar
Suraj Patil committed
275
276
277
278
279
280
281
282
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_predict
        else None
    )

    # Initialize our Trainer
283
284
285
    compute_metrics_fn = (
        build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None
    )
Suraj Patil's avatar
Suraj Patil committed
286
287
288
289
290
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
291
292
293
        data_collator=Seq2SeqDataCollator(
            tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores
        ),
294
        compute_metrics=compute_metrics_fn,
Sylvain Gugger's avatar
Sylvain Gugger committed
295
        tokenizer=tokenizer,
Suraj Patil's avatar
Suraj Patil committed
296
297
    )

298
    all_metrics = {}
Suraj Patil's avatar
Suraj Patil committed
299
300
    # Training
    if training_args.do_train:
301
302
        logger.info("*** Train ***")

303
        train_result = trainer.train(
Suraj Patil's avatar
Suraj Patil committed
304
305
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
306
307
        metrics = train_result.metrics
        metrics["train_n_objs"] = data_args.n_train
308
309
310

        trainer.save_model()  # this also saves the tokenizer

Suraj Patil's avatar
Suraj Patil committed
311
        if trainer.is_world_process_zero():
312
313
314
315
            handle_metrics("train", metrics, training_args.output_dir)
            all_metrics.update(metrics)

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
316
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
317
318
319

            # For convenience, we also re-save the tokenizer to the same directory,
            # so that you can share your model easily on huggingface.co/models =)
Suraj Patil's avatar
Suraj Patil committed
320
321
322
323
324
325
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

Sylvain Gugger's avatar
Sylvain Gugger committed
326
        metrics = trainer.evaluate(
327
            metric_key_prefix="val", max_length=data_args.val_max_target_length, num_beams=data_args.eval_beams
Sylvain Gugger's avatar
Sylvain Gugger committed
328
        )
329
        metrics["val_n_objs"] = data_args.n_val
330
        metrics["val_loss"] = round(metrics["val_loss"], 4)
Suraj Patil's avatar
Suraj Patil committed
331
332

        if trainer.is_world_process_zero():
333
334
335

            handle_metrics("val", metrics, training_args.output_dir)
            all_metrics.update(metrics)
Suraj Patil's avatar
Suraj Patil committed
336
337

    if training_args.do_predict:
338
        logger.info("*** Predict ***")
Suraj Patil's avatar
Suraj Patil committed
339

Sylvain Gugger's avatar
Sylvain Gugger committed
340
341
342
        test_output = trainer.predict(
            test_dataset=test_dataset,
            metric_key_prefix="test",
343
            max_length=data_args.val_max_target_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
344
345
            num_beams=data_args.eval_beams,
        )
346
        metrics = test_output.metrics
347
        metrics["test_n_objs"] = data_args.n_test
Suraj Patil's avatar
Suraj Patil committed
348
349

        if trainer.is_world_process_zero():
350
351
352
            metrics["test_loss"] = round(metrics["test_loss"], 4)
            handle_metrics("test", metrics, training_args.output_dir)
            all_metrics.update(metrics)
Suraj Patil's avatar
Suraj Patil committed
353
354

            if training_args.predict_with_generate:
355
356
357
                test_preds = tokenizer.batch_decode(
                    test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
Suraj Patil's avatar
Suraj Patil committed
358
                test_preds = lmap(str.strip, test_preds)
359
                write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt"))
Suraj Patil's avatar
Suraj Patil committed
360

361
    if trainer.is_world_process_zero():
362
363
364
        save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json"))

    return all_metrics
Suraj Patil's avatar
Suraj Patil committed
365
366
367
368
369
370
371
372
373


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()