"tests/models/prophetnet/test_modeling_prophetnet.py" did not exist on "bc0d26d1dea73b23f6e388c18709287d5423a2d8"
finetune_trainer.py 13.9 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15

Suraj Patil's avatar
Suraj Patil committed
16
17
18
import logging
import os
import sys
19
import time
Suraj Patil's avatar
Suraj Patil committed
20
from dataclasses import dataclass, field
21
from typing import Optional
Suraj Patil's avatar
Suraj Patil committed
22

23
import transformers
24
25
26
from seq2seq_trainer import Seq2SeqTrainer
from seq2seq_training_args import Seq2SeqTrainingArguments
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, set_seed
27
from transformers.trainer_utils import EvaluationStrategy, is_main_process
28
from transformers.training_args import ParallelMode
Suraj Patil's avatar
Suraj Patil committed
29
from utils import (
30
    Seq2SeqDataCollator,
Suraj Patil's avatar
Suraj Patil committed
31
32
    Seq2SeqDataset,
    assert_all_frozen,
33
    build_compute_metrics_fn,
34
    check_output_dir,
35
    freeze_embeds,
Suraj Patil's avatar
Suraj Patil committed
36
37
    freeze_params,
    lmap,
38
    save_json,
Suraj Patil's avatar
Suraj Patil committed
39
    use_task_specific_params,
40
    write_txt_file,
Suraj Patil's avatar
Suraj Patil committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
)


logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
63
64
        default=None,
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
Suraj Patil's avatar
Suraj Patil committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    )
    freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."})
    freeze_embeds: bool = field(default=False, metadata={"help": "Whether  to freeze the embeddings."})


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."}
    )
    task: Optional[str] = field(
        default="summarization",
        metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"},
    )
    max_source_length: Optional[int] = field(
        default=1024,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    max_target_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
        default=142,
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    test_max_target_length: Optional[int] = field(
        default=142,
        metadata={
            "help": "The maximum total sequence length for test target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."})
    n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."})
    n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."})
    src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
    tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
    eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."})
117
118
119
120
    ignore_pad_token_for_loss: bool = field(
        default=True,
        metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."},
    )
Suraj Patil's avatar
Suraj Patil committed
121
122


123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
def speed_metrics(split, start_time, num_samples):
    """
    Measure and return speed performance metrics.

    This function requires a time snapshot `start_time` before the operation to be measured starts and this
    function should be run immediately after the operation to be measured has completed.

    Args:
    - split: one of train, val, test
    - start_time: operation start time
    - num_samples: number of samples processed

    """
    runtime = time.time() - start_time
    result = {}

    samples_per_second = 1 / (runtime / num_samples)
    result[f"{split}_samples_per_second"] = round(samples_per_second, 3)
    result[f"{split}_runtime"] = round(runtime, 4)

    result[f"{split}_n_ojbs"] = num_samples
    return result


def handle_metrics(split, metrics, output_dir):
    """
    Log and save metrics

    Args:
    - split: one of train, val, test
    - metrics: metrics dict
    - output_dir: where to save the metrics
    """

    logger.info(f"***** {split} metrics *****")
    for key, value in metrics.items():
        logger.info(f"  {key} = {value}")
    save_json(metrics, os.path.join(output_dir, f"{split}_results.json"))


Suraj Patil's avatar
Suraj Patil committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

177
    check_output_dir(training_args)
Suraj Patil's avatar
Suraj Patil committed
178
179
180
181
182
183
184
185
186
187
188
189

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
190
        bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED),
Suraj Patil's avatar
Suraj Patil committed
191
192
        training_args.fp16,
    )
193
194
195
196
197
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
Suraj Patil's avatar
Suraj Patil committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
213
214
215
216
217
218
219

    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        if getattr(training_args, p, None):
            assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute"
            setattr(config, p, getattr(training_args, p))

Suraj Patil's avatar
Suraj Patil committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=".ckpt" in model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
    )

    # use task specific params
    use_task_specific_params(model, data_args.task)

    # set num_beams for evaluation
235
236
    if data_args.eval_beams is None:
        data_args.eval_beams = model.config.num_beams
Suraj Patil's avatar
Suraj Patil committed
237
238
239

    # set decoder_start_token_id for MBart
    if model.config.decoder_start_token_id is None and isinstance(tokenizer, MBartTokenizer):
240
241
242
243
        assert (
            data_args.tgt_lang is not None and data_args.src_lang is not None
        ), "mBart requires --tgt_lang and --src_lang"
        model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang]
Suraj Patil's avatar
Suraj Patil committed
244
245
246
247
248
249
250

    if model_args.freeze_embeds:
        freeze_embeds(model)
    if model_args.freeze_encoder:
        freeze_params(model.get_encoder())
        assert_all_frozen(model.get_encoder())

251
    dataset_class = Seq2SeqDataset
Suraj Patil's avatar
Suraj Patil committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

    # Get datasets
    train_dataset = (
        dataset_class(
            tokenizer,
            type_path="train",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_train,
            max_target_length=data_args.max_target_length,
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_train
        else None
    )
    eval_dataset = (
        dataset_class(
            tokenizer,
            type_path="val",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_val,
            max_target_length=data_args.val_max_target_length,
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
277
        if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
Suraj Patil's avatar
Suraj Patil committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
        else None
    )
    test_dataset = (
        dataset_class(
            tokenizer,
            type_path="test",
            data_dir=data_args.data_dir,
            n_obs=data_args.n_test,
            max_target_length=data_args.test_max_target_length,
            max_source_length=data_args.max_source_length,
            prefix=model.config.prefix or "",
        )
        if training_args.do_predict
        else None
    )

    # Initialize our Trainer
295
296
297
    compute_metrics_fn = (
        build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None
    )
Suraj Patil's avatar
Suraj Patil committed
298
299
    trainer = Seq2SeqTrainer(
        model=model,
300
        config=config,
Suraj Patil's avatar
Suraj Patil committed
301
302
303
304
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        data_collator=Seq2SeqDataCollator(tokenizer, data_args, training_args.tpu_num_cores),
305
        compute_metrics=compute_metrics_fn,
306
        data_args=data_args,
Suraj Patil's avatar
Suraj Patil committed
307
308
    )

309
    all_metrics = {}
Suraj Patil's avatar
Suraj Patil committed
310
311
    # Training
    if training_args.do_train:
312
313
314
        logger.info("*** Train ***")

        start_time = time.time()
Suraj Patil's avatar
Suraj Patil committed
315
316
317
        trainer.train(
            model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None
        )
318
319
320
321
        metrics = speed_metrics("train", start_time, data_args.n_train)

        trainer.save_model()  # this also saves the tokenizer

Suraj Patil's avatar
Suraj Patil committed
322
        if trainer.is_world_process_zero():
323
324
325
326
            handle_metrics("train", metrics, training_args.output_dir)
            all_metrics.update(metrics)

            # Need to save the state, since Trainer.save_model saves only the tokenizer with the model
327
            trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
328
329
330

            # For convenience, we also re-save the tokenizer to the same directory,
            # so that you can share your model easily on huggingface.co/models =)
Suraj Patil's avatar
Suraj Patil committed
331
332
333
334
335
336
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

337
338
339
340
        start_time = time.time()
        metrics = trainer.evaluate(metric_key_prefix="val")
        metrics.update(speed_metrics("val", start_time, data_args.n_val))
        metrics["val_loss"] = round(metrics["val_loss"], 4)
Suraj Patil's avatar
Suraj Patil committed
341
342

        if trainer.is_world_process_zero():
343
344
345

            handle_metrics("val", metrics, training_args.output_dir)
            all_metrics.update(metrics)
Suraj Patil's avatar
Suraj Patil committed
346
347

    if training_args.do_predict:
348
        logger.info("*** Predict ***")
Suraj Patil's avatar
Suraj Patil committed
349

350
351
352
353
        start_time = time.time()
        test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test")
        metrics = test_output.metrics
        metrics.update(speed_metrics("test", start_time, data_args.n_test))
Suraj Patil's avatar
Suraj Patil committed
354
355

        if trainer.is_world_process_zero():
356
357
358
            metrics["test_loss"] = round(metrics["test_loss"], 4)
            handle_metrics("test", metrics, training_args.output_dir)
            all_metrics.update(metrics)
Suraj Patil's avatar
Suraj Patil committed
359
360

            if training_args.predict_with_generate:
361
362
363
                test_preds = tokenizer.batch_decode(
                    test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
                )
Suraj Patil's avatar
Suraj Patil committed
364
                test_preds = lmap(str.strip, test_preds)
365
                write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt"))
Suraj Patil's avatar
Suraj Patil committed
366

367
    if trainer.is_world_process_zero():
368
369
370
        save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json"))

    return all_metrics
Suraj Patil's avatar
Suraj Patil committed
371
372
373
374
375
376
377
378
379


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()