generation_utils.md 7.06 KB
Newer Older
Sylvain Gugger's avatar
Sylvain Gugger committed
1
2
3
4
5
6
7
8
9
10
<!--Copyright 2020 The HuggingFace Team. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
11
12
13
14

鈿狅笍 Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.

Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
18
-->

# Utilities for Generation

19
20
21
22
23
24
25
26
This page lists all the utility functions used by [`~generation.GenerationMixin.generate`],
[`~generation.GenerationMixin.greedy_search`],
[`~generation.GenerationMixin.contrastive_search`],
[`~generation.GenerationMixin.sample`],
[`~generation.GenerationMixin.beam_search`],
[`~generation.GenerationMixin.beam_sample`],
[`~generation.GenerationMixin.group_beam_search`], and
[`~generation.GenerationMixin.constrained_beam_search`].
Sylvain Gugger's avatar
Sylvain Gugger committed
27
28
29
30
31

Most of those are only useful if you are studying the code of the generate methods in the library.

## Generate Outputs

32
The output of [`~generation.GenerationMixin.generate`] is an instance of a subclass of
33
[`~utils.ModelOutput`]. This output is a data structure containing all the information returned
34
by [`~generation.GenerationMixin.generate`], but that can also be used as tuple or dictionary.
Sylvain Gugger's avatar
Sylvain Gugger committed
35
36
37
38
39
40

Here's an example:

```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel

Sylvain Gugger's avatar
Sylvain Gugger committed
41
42
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
45
46
47

inputs = tokenizer("Hello, my dog is cute and ", return_tensors="pt")
generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
```

48
The `generation_output` object is a [`~generation.GreedySearchDecoderOnlyOutput`], as we can
Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
see in the documentation of that class below, it means it has the following attributes:

- `sequences`: the generated sequences of tokens
- `scores` (optional): the prediction scores of the language modelling head, for each generation step
- `hidden_states` (optional): the hidden states of the model, for each generation step
- `attentions` (optional): the attention weights of the model, for each generation step

Here we have the `scores` since we passed along `output_scores=True`, but we don't have `hidden_states` and
`attentions` because we didn't pass `output_hidden_states=True` or `output_attentions=True`.

You can access each attribute as you would usually do, and if that attribute has not been returned by the model, you
will get `None`. Here for instance `generation_output.scores` are all the generated prediction scores of the
language modeling head, and `generation_output.attentions` is `None`.

When using our `generation_output` object as a tuple, it only keeps the attributes that don't have `None` values.
Here, for instance, it has two elements, `loss` then `logits`, so

```python
generation_output[:2]
```

will return the tuple `(generation_output.sequences, generation_output.scores)` for instance.

When using our `generation_output` object as a dictionary, it only keeps the attributes that don't have `None`
values. Here, for instance, it has two keys that are `sequences` and `scores`.

We document here all output types.


### GreedySearchOutput

80
[[autodoc]] generation.GreedySearchDecoderOnlyOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
81

82
[[autodoc]] generation.GreedySearchEncoderDecoderOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
83

84
[[autodoc]] generation.FlaxGreedySearchOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
85
86
87

### SampleOutput

88
[[autodoc]] generation.SampleDecoderOnlyOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
89

90
[[autodoc]] generation.SampleEncoderDecoderOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
91

92
[[autodoc]] generation.FlaxSampleOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
93
94
95

### BeamSearchOutput

96
[[autodoc]] generation.BeamSearchDecoderOnlyOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
97

98
[[autodoc]] generation.BeamSearchEncoderDecoderOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
99
100
101

### BeamSampleOutput

102
[[autodoc]] generation.BeamSampleDecoderOnlyOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
103

104
[[autodoc]] generation.BeamSampleEncoderDecoderOutput
Sylvain Gugger's avatar
Sylvain Gugger committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

## LogitsProcessor

A [`LogitsProcessor`] can be used to modify the prediction scores of a language model head for
generation.

[[autodoc]] LogitsProcessor
    - __call__

[[autodoc]] LogitsProcessorList
    - __call__

[[autodoc]] LogitsWarper
    - __call__

[[autodoc]] MinLengthLogitsProcessor
    - __call__

123
124
125
[[autodoc]] MinNewTokensLengthLogitsProcessor
    - __call__

Sylvain Gugger's avatar
Sylvain Gugger committed
126
127
128
129
130
131
132
133
134
135
136
137
[[autodoc]] TemperatureLogitsWarper
    - __call__

[[autodoc]] RepetitionPenaltyLogitsProcessor
    - __call__

[[autodoc]] TopPLogitsWarper
    - __call__

[[autodoc]] TopKLogitsWarper
    - __call__

138
139
140
[[autodoc]] TypicalLogitsWarper
    - __call__

Sylvain Gugger's avatar
Sylvain Gugger committed
141
142
143
[[autodoc]] NoRepeatNGramLogitsProcessor
    - __call__

144
145
146
[[autodoc]] SequenceBiasLogitsProcessor
    - __call__

Sylvain Gugger's avatar
Sylvain Gugger committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
[[autodoc]] NoBadWordsLogitsProcessor
    - __call__

[[autodoc]] PrefixConstrainedLogitsProcessor
    - __call__

[[autodoc]] HammingDiversityLogitsProcessor
    - __call__

[[autodoc]] ForcedBOSTokenLogitsProcessor
    - __call__

[[autodoc]] ForcedEOSTokenLogitsProcessor
    - __call__

[[autodoc]] InfNanRemoveLogitsProcessor
    - __call__

165
166
167
168
169
170
[[autodoc]] TFLogitsProcessor
    - __call__

[[autodoc]] TFLogitsProcessorList
    - __call__

171
172
173
174
175
176
177
178
179
180
181
182
[[autodoc]] TFLogitsWarper
    - __call__

[[autodoc]] TFTemperatureLogitsWarper
    - __call__

[[autodoc]] TFTopPLogitsWarper
    - __call__

[[autodoc]] TFTopKLogitsWarper
    - __call__

183
184
185
186
187
[[autodoc]] TFMinLengthLogitsProcessor
    - __call__

[[autodoc]] TFNoBadWordsLogitsProcessor
    - __call__
188

189
190
[[autodoc]] TFNoRepeatNGramLogitsProcessor
    - __call__
191

192
193
[[autodoc]] TFRepetitionPenaltyLogitsProcessor
    - __call__
194

195
196
197
198
199
200
[[autodoc]] TFForcedBOSTokenLogitsProcessor
    - __call__

[[autodoc]] TFForcedEOSTokenLogitsProcessor
    - __call__

Sylvain Gugger's avatar
Sylvain Gugger committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
[[autodoc]] FlaxLogitsProcessor
    - __call__

[[autodoc]] FlaxLogitsProcessorList
    - __call__

[[autodoc]] FlaxLogitsWarper
    - __call__

[[autodoc]] FlaxTemperatureLogitsWarper
    - __call__

[[autodoc]] FlaxTopPLogitsWarper
    - __call__

[[autodoc]] FlaxTopKLogitsWarper
    - __call__

[[autodoc]] FlaxForcedBOSTokenLogitsProcessor
    - __call__

[[autodoc]] FlaxForcedEOSTokenLogitsProcessor
    - __call__

[[autodoc]] FlaxMinLengthLogitsProcessor
    - __call__

## StoppingCriteria

A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token).

[[autodoc]] StoppingCriteria
    - __call__

[[autodoc]] StoppingCriteriaList
    - __call__

[[autodoc]] MaxLengthCriteria
    - __call__

[[autodoc]] MaxTimeCriteria
    - __call__

244
245
246
247
248
249
250
251
## Constraints

A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output.

[[autodoc]] Constraint

[[autodoc]] PhrasalConstraint

252
253
[[autodoc]] DisjunctiveConstraint

254
255
[[autodoc]] ConstraintListState

Sylvain Gugger's avatar
Sylvain Gugger committed
256
257
258
259
260
261
262
263
264
265
## BeamSearch

[[autodoc]] BeamScorer
    - process
    - finalize

[[autodoc]] BeamSearchScorer
    - process
    - finalize

266
267
268
269
[[autodoc]] ConstrainedBeamSearchScorer
    - process
    - finalize

Sylvain Gugger's avatar
Sylvain Gugger committed
270
271
272
273
274
## Utilities

[[autodoc]] top_k_top_p_filtering

[[autodoc]] tf_top_k_top_p_filtering
275
276
277
278

## Streamers

[[autodoc]] TextStreamer
279
280

[[autodoc]] TextIteratorStreamer