"official/projects/simclr/modeling/simclr_model.py" did not exist on "42ad9d5eab7a0fd812541013cf5fa4e7896b1f84"
run_swag.py 29.5 KB
Newer Older
1
#!/usr/bin/env python
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
18
19
"""BERT finetuning runner.
   Finetuning the library models for multiple choice on SWAG (Bert).
"""
Aymeric Augustin's avatar
Aymeric Augustin committed
20

21
22

import argparse
23
import csv
Aymeric Augustin's avatar
Aymeric Augustin committed
24
25
import glob
import logging
26
27
28
29
30
import os
import random

import numpy as np
import torch
31
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
32
from torch.utils.data.distributed import DistributedSampler
Aymeric Augustin's avatar
Aymeric Augustin committed
33
34
from tqdm import tqdm, trange

35
import transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
36
37
38
39
40
41
42
43
from transformers import (
    WEIGHTS_NAME,
    AdamW,
    AutoConfig,
    AutoModelForMultipleChoice,
    AutoTokenizer,
    get_linear_schedule_with_warmup,
)
44
from transformers.trainer_utils import is_main_process
Aymeric Augustin's avatar
Aymeric Augustin committed
45

46

47
48
try:
    from torch.utils.tensorboard import SummaryWriter
49
except ImportError:
50
51
    from tensorboardX import SummaryWriter

52
53
54

logger = logging.getLogger(__name__)

55

56
57
class SwagExample(object):
    """A single training/test example for the SWAG dataset."""
58
59

    def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None):
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        self.swag_id = swag_id
        self.context_sentence = context_sentence
        self.start_ending = start_ending
        self.endings = [
            ending_0,
            ending_1,
            ending_2,
            ending_3,
        ]
        self.label = label

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
75
        attributes = [
76
77
78
79
80
81
82
83
84
85
            "swag_id: {}".format(self.swag_id),
            "context_sentence: {}".format(self.context_sentence),
            "start_ending: {}".format(self.start_ending),
            "ending_0: {}".format(self.endings[0]),
            "ending_1: {}".format(self.endings[1]),
            "ending_2: {}".format(self.endings[2]),
            "ending_3: {}".format(self.endings[3]),
        ]

        if self.label is not None:
86
            attributes.append("label: {}".format(self.label))
87

88
        return ", ".join(attributes)
89
90


91
92
class InputFeatures(object):
    def __init__(self, example_id, choices_features, label):
93
94
        self.example_id = example_id
        self.choices_features = [
95
            {"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids}
96
97
98
99
            for _, input_ids, input_mask, segment_ids in choices_features
        ]
        self.label = label

100

101
def read_swag_examples(input_file, is_training=True):
102
    with open(input_file, "r", encoding="utf-8") as f:
103
        lines = list(csv.reader(f))
104

105
106
    if is_training and lines[0][-1] != "label":
        raise ValueError("For training, the input file must contain a label column.")
107
108
109

    examples = [
        SwagExample(
110
111
112
113
114
115
116
117
118
119
120
121
            swag_id=line[2],
            context_sentence=line[4],
            start_ending=line[5],  # in the swag dataset, the
            # common beginning of each
            # choice is stored in "sent2".
            ending_0=line[7],
            ending_1=line[8],
            ending_2=line[9],
            ending_3=line[10],
            label=int(line[11]) if is_training else None,
        )
        for line in lines[1:]  # we skip the line with the column names
122
123
124
125
    ]

    return examples

126
127

def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training):
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    """Loads a data file into a list of `InputBatch`s."""

    # Swag is a multiple choice task. To perform this task using Bert,
    # we will use the formatting proposed in "Improving Language
    # Understanding by Generative Pre-Training" and suggested by
    # @jacobdevlin-google in this issue
    # https://github.com/google-research/bert/issues/38.
    #
    # Each choice will correspond to a sample on which we run the
    # inference. For a given Swag example, we will create the 4
    # following inputs:
    # - [CLS] context [SEP] choice_1 [SEP]
    # - [CLS] context [SEP] choice_2 [SEP]
    # - [CLS] context [SEP] choice_3 [SEP]
    # - [CLS] context [SEP] choice_4 [SEP]
    # The model will output a single value for each input. To get the
    # final decision of the model, we will run a softmax over these 4
    # outputs.
    features = []
147
    for example_index, example in tqdm(enumerate(examples)):
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        context_tokens = tokenizer.tokenize(example.context_sentence)
        start_ending_tokens = tokenizer.tokenize(example.start_ending)

        choices_features = []
        for ending_index, ending in enumerate(example.endings):
            # We create a copy of the context tokens in order to be
            # able to shrink it according to ending_tokens
            context_tokens_choice = context_tokens[:]
            ending_tokens = start_ending_tokens + tokenizer.tokenize(ending)
            # Modifies `context_tokens_choice` and `ending_tokens` in
            # place so that the total length is less than the
            # specified length.  Account for [CLS], [SEP], [SEP] with
            # "- 3"
            _truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3)

            tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"]
            segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            padding = [0] * (max_seq_length - len(input_ids))
            input_ids += padding
            input_mask += padding
            segment_ids += padding

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            choices_features.append((tokens, input_ids, input_mask, segment_ids))

        label = example.label
        if example_index < 5:
            logger.info("*** Example ***")
            logger.info("swag_id: {}".format(example.swag_id))
            for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features):
                logger.info("choice: {}".format(choice_idx))
187
188
189
190
                logger.info("tokens: {}".format(" ".join(tokens)))
                logger.info("input_ids: {}".format(" ".join(map(str, input_ids))))
                logger.info("input_mask: {}".format(" ".join(map(str, input_mask))))
                logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids))))
191
192
193
            if is_training:
                logger.info("label: {}".format(label))

194
        features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label))
195
196
197

    return features

198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
    """Truncates a sequence pair in place to the maximum length."""

    # This is a simple heuristic which will always truncate the longer sequence
    # one token at a time. This makes more sense than truncating an equal percent
    # of tokens from each, since if one sequence is very short then each token
    # that's truncated likely contains more information than a longer sequence.
    while True:
        total_length = len(tokens_a) + len(tokens_b)
        if total_length <= max_length:
            break
        if len(tokens_a) > len(tokens_b):
            tokens_a.pop()
        else:
            tokens_b.pop()

215

216
217
218
219
def accuracy(out, labels):
    outputs = np.argmax(out, axis=1)
    return np.sum(outputs == labels)

220

221
def select_field(features, field):
222
    return [[choice[field] for choice in feature.choices_features] for feature in features]
223

224
225
226
227
228
229
230
231

def set_seed(args):
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

232

233
234
235
236
237
238
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False):
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Load data features from cache or dataset file
    input_file = args.predict_file if evaluate else args.train_file
239
240
241
242
243
244
245
246
    cached_features_file = os.path.join(
        os.path.dirname(input_file),
        "cached_{}_{}_{}".format(
            "dev" if evaluate else "train",
            list(filter(None, args.model_name_or_path.split("/"))).pop(),
            str(args.max_seq_length),
        ),
    )
247
248
249
250
251
252
    if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", input_file)
        examples = read_swag_examples(input_file)
253
        features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate)
254
255
256
257
258
259
260
261
262

        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)

    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    # Convert to Tensors and build dataset
263
264
265
    all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long)
    all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long)
    all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long)
266
267
268
    all_label = torch.tensor([f.label for f in features], dtype=torch.long)

    if evaluate:
269
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
270
    else:
271
        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label)
272
273
274
275

    if output_examples:
        return dataset, examples, features
    return dataset
276
277


278
def train(args, train_dataset, model, tokenizer):
Patrick von Platen's avatar
Patrick von Platen committed
279
    """Train the model"""
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    if args.local_rank in [-1, 0]:
        tb_writer = SummaryWriter()

    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
    train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)

    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

    # Prepare optimizer and schedule (linear warmup and decay)
294
    no_decay = ["bias", "LayerNorm.weight"]
295
    optimizer_grouped_parameters = [
296
297
298
299
300
301
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
    ]
302
    optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
303
304
305
    scheduler = get_linear_schedule_with_warmup(
        optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
    )
306
307
308
309
310
311
312
313
314
315
316
317
318
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
        model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
319
320
321
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
        )
322
323
324
325
326
327

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
328
329
330
331
332
333
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size
        * args.gradient_accumulation_steps
        * (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
334
335
336
337
338
339
340
    logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
341
    set_seed(args)  # Added here for reproductibility
342
343
344
345
346
    for _ in train_iterator:
        epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
347
348
349
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
350
                # 'token_type_ids':  None if args.model_type == 'xlm' else batch[2],
351
352
353
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
354
355
356
357
            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[5],
            #                    'p_mask':       batch[6]})
            outputs = model(**inputs)
358
            loss = outputs[0]  # model outputs are always tuple in transformers (see doc)
359
360

            if args.n_gpu > 1:
361
                loss = loss.mean()  # mean() to average on multi-gpu parallel (not distributed) training
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

                if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                    # Log metrics
382
383
384
                    if (
                        args.local_rank == -1 and args.evaluate_during_training
                    ):  # Only evaluate when single GPU otherwise metrics may not average well
385
386
                        results = evaluate(args, model, tokenizer)
                        for key, value in results.items():
387
388
389
                            tb_writer.add_scalar("eval_{}".format(key), value, global_step)
                    tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                    tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
390
391
392
393
                    logging_loss = tr_loss

                if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                    # Save model checkpoint
394
395
396
397
                    output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                    model_to_save = (
                        model.module if hasattr(model, "module") else model
                    )  # Take care of distributed/parallel training
398
399
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_vocabulary(output_dir)
400
                    torch.save(args, os.path.join(output_dir, "training_args.bin"))
401
402
403
404
405
406
407
408
409
410
411
412
413
414
                    logger.info("Saving model checkpoint to %s", output_dir)

            if args.max_steps > 0 and global_step > args.max_steps:
                epoch_iterator.close()
                break
        if args.max_steps > 0 and global_step > args.max_steps:
            train_iterator.close()
            break

    if args.local_rank in [-1, 0]:
        tb_writer.close()

    return global_step, tr_loss / global_step

415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
def evaluate(args, model, tokenizer, prefix=""):
    dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True)

    if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(args.output_dir)

    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset)
    eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)

    # Eval!
    logger.info("***** Running evaluation {} *****".format(prefix))
    logger.info("  Num examples = %d", len(dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)

    eval_loss, eval_accuracy = 0, 0
    nb_eval_steps, nb_eval_examples = 0, 0

    for batch in tqdm(eval_dataloader, desc="Evaluating"):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
439
440
441
442
443
444
445
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                # 'token_type_ids': None if args.model_type == 'xlm' else batch[2]  # XLM don't use segment_ids
                "token_type_ids": batch[2],
                "labels": batch[3],
            }
446
447
448
449
450
451
452
453
454

            # if args.model_type in ['xlnet', 'xlm']:
            #     inputs.update({'cls_index': batch[4],
            #                    'p_mask':    batch[5]})
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            eval_loss += tmp_eval_loss.mean().item()

        logits = logits.detach().cpu().numpy()
455
        label_ids = inputs["labels"].to("cpu").numpy()
456
457
458
459
        tmp_eval_accuracy = accuracy(logits, label_ids)
        eval_accuracy += tmp_eval_accuracy

        nb_eval_steps += 1
460
        nb_eval_examples += inputs["input_ids"].size(0)
461
462
463

    eval_loss = eval_loss / nb_eval_steps
    eval_accuracy = eval_accuracy / nb_eval_examples
464
    result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy}
465
466
467
468
469
470
471
472
473
474

    output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
    with open(output_eval_file, "w") as writer:
        logger.info("***** Eval results *****")
        for key in sorted(result.keys()):
            logger.info("%s = %s", key, str(result[key]))
            writer.write("%s = %s\n" % (key, str(result[key])))

    return result

475

476
477
478
def main():
    parser = argparse.ArgumentParser()

479
    # Required parameters
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    parser.add_argument(
        "--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv"
    )
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        required=True,
        help="SWAG csv for predictions. E.g., val.csv or test.csv",
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
495
        help="Path to pretrained model or model identifier from huggingface.co/models",
496
497
498
499
500
501
502
503
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints and predictions will be written.",
    )
504

505
    # Other parameters
506
507
508
509
510
511
512
513
514
515
516
517
518
    parser.add_argument(
        "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name"
    )
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
Sylvain Gugger's avatar
Sylvain Gugger committed
519
520
521
522
        help=(
            "The maximum total input sequence length after tokenization. Sequences "
            "longer than this will be truncated, and sequences shorter than this will be padded."
        ),
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    )
    parser.add_argument("--do_train", action="store_true", help="Whether to run training.")
    parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.")
    parser.add_argument(
        "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step."
    )

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.")
    parser.add_argument(
        "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation."
    )
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument(
        "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform."
    )
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.")

    parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.")
    parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
    parser.add_argument(
        "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory"
    )
    parser.add_argument(
        "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
    )
    parser.add_argument("--seed", type=int, default=42, help="random seed for initialization")

    parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
Sylvain Gugger's avatar
Sylvain Gugger committed
581
582
583
584
        help=(
            "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
            "See details at https://nvidia.github.io/apex/amp.html"
        ),
585
586
587
    )
    parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
    parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
588
589
    args = parser.parse_args()

590
591
592
593
594
595
596
597
598
599
600
    if (
        os.path.exists(args.output_dir)
        and os.listdir(args.output_dir)
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir
            )
        )
601
602
603
604
605

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
606

607
608
609
610
611
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
612
613
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
614
        args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
615
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
616
617
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
618
        torch.distributed.init_process_group(backend="nccl")
619
620
        args.n_gpu = 1
    args.device = device
621

622
    # Setup logging
623
    logging.basicConfig(
624
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
625
626
627
628
629
630
631
632
633
634
635
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
636
637
638
639
640
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
641

642
643
    # Set seed
    set_seed(args)
644

645
646
647
    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
648

649
    config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path)
Lysandre's avatar
Lysandre committed
650
651
652
    tokenizer = AutoTokenizer.from_pretrained(
        args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
    )
653
    model = AutoModelForMultipleChoice.from_pretrained(
654
655
        args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config
    )
656

657
658
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
659

660
    model.to(args.device)
661

662
    logger.info("Training/evaluation parameters %s", args)
663

664
    # Training
665
    if args.do_train:
666
667
668
        train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False)
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
669

670
671
672
673
674
    # Save the trained model and the tokenizer
    if args.local_rank == -1 or torch.distributed.get_rank() == 0:
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
675
676
677
        model_to_save = (
            model.module if hasattr(model, "module") else model
        )  # Take care of distributed/parallel training
678
679
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_pretrained(args.output_dir)
680

681
        # Good practice: save your training arguments together with the trained model
682
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
683
684

        # Load a trained model and vocabulary that you have fine-tuned
685
686
        model = AutoModelForMultipleChoice.from_pretrained(args.output_dir)
        tokenizer = AutoTokenizer.from_pretrained(args.output_dir)
687
        model.to(args.device)
688

689
690
691
692
693
694
695
696
697
698
    # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        if args.do_train:
            checkpoints = [args.output_dir]
        else:
            # if do_train is False and do_eval is true, load model directly from pretrained.
            checkpoints = [args.model_name_or_path]

        if args.eval_all_checkpoints:
699
            checkpoints = [
700
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True))
701
            ]
702
703
704
705
706

        logger.info("Evaluate the following checkpoints: %s", checkpoints)

        for checkpoint in checkpoints:
            # Reload the model
707
            global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else ""
708
709
            model = AutoModelForMultipleChoice.from_pretrained(checkpoint)
            tokenizer = AutoTokenizer.from_pretrained(checkpoint)
710
            model.to(args.device)
711

712
713
            # Evaluate
            result = evaluate(args, model, tokenizer, prefix=global_step)
714

715
            result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()}
716
            results.update(result)
717

718
    logger.info("Results: {}".format(results))
719

720
    return results
721
722
723
724


if __name__ == "__main__":
    main()