test_modeling_umt5.py 25.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
import copy
import os
import pickle
18
19
20
21
import tempfile
import unittest

from transformers import T5Config, is_torch_available
22
from transformers.models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES
23
24
25
26
27
28
29
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    slow,
    torch_device,
)
30
from transformers.utils import is_torch_fx_available
31
32

from ...generation.test_utils import GenerationTesterMixin
33
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, ids_tensor
34
35
36
from ...test_pipeline_mixin import PipelineTesterMixin


37
38
39
40
if is_torch_fx_available():
    from transformers.utils.fx import symbolic_trace


41
42
43
if is_torch_available():
    import torch

44
45
46
47
48
49
50
    from transformers import (
        AutoTokenizer,
        UMT5ForConditionalGeneration,
        UMT5ForQuestionAnswering,
        UMT5ForSequenceClassification,
        UMT5Model,
    )
51
52


53
# Copied from test.models.t5.test_modeling_t5.T5ModelTester with T5->UMT5
54
55
56
57
58
59
60
class UMT5ModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        encoder_seq_length=7,
61
        decoder_seq_length=7,
62
63
64
65
66
        # For common tests
        is_training=True,
        use_attention_mask=True,
        use_labels=False,
        hidden_size=32,
67
        num_hidden_layers=2,
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=8,
        dropout_rate=0.1,
        initializer_factor=0.002,
        eos_token_id=1,
        pad_token_id=0,
        decoder_start_token_id=0,
        scope=None,
        decoder_layers=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.encoder_seq_length = encoder_seq_length
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.scope = None
        self.decoder_layers = decoder_layers

    def get_large_model_config(self):
        return T5Config.from_pretrained("google/umt5-base")

    def prepare_inputs_dict(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
    ):
        if attention_mask is None:
            attention_mask = input_ids.ne(config.pad_token_id)
        if decoder_attention_mask is None:
            decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
        if head_mask is None:
            head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=torch_device)
        if decoder_head_mask is None:
            decoder_head_mask = torch.ones(config.num_decoder_layers, config.num_attention_heads, device=torch_device)
        if cross_attn_head_mask is None:
            cross_attn_head_mask = torch.ones(
                config.num_decoder_layers, config.num_attention_heads, device=torch_device
            )
        return {
            "input_ids": input_ids,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
        }

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
        decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        # we need to clamp the input ids here to avoid having pad token in between
        # this is because for NllbMoe the position_ids are prepared such that
        # all pad tokens have pos id = 2 and rest are between 2..seq_length
        # and the seq_length here is seq_length - num_pad_tokens
        # but when using past, there is no way of knowing if the past input ids had
        # pad tokens in them, which results in incorrect seq_lenth and which in turn results in
        # position_ids being off by num_pad_tokens in past input
149
150
        input_ids = input_ids.clamp(self.pad_token_id + 2)
        input_ids[:, -1] = self.eos_token_id  # Eos Token
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
        decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1)

        config = self.get_config()
        config.encoder_attention_heads = config.num_attention_heads
        input_dict = self.prepare_inputs_dict(config, input_ids, decoder_input_ids)
        return config, input_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_pipeline_config(self):
        return T5Config(
            vocab_size=166,  # t5 forces 100 extra tokens
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def get_config(self):
        return T5Config(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UMT5Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )
        result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
        decoder_output = result.last_hidden_state
        decoder_past = result.past_key_values
        encoder_output = result.encoder_last_hidden_state

        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
        self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
        # There should be `num_layers` key value embeddings stored in decoder_past
        self.parent.assertEqual(len(decoder_past), config.num_layers)
        # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
        self.parent.assertEqual(len(decoder_past[0]), 4)

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UMT5Model(config=config).get_decoder().to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_model_fp16_forward(
        self,
        config,
        input_dict,
    ):
        model = UMT5Model(config=config).to(torch_device).half().eval()
        output = model(**input_dict)["last_hidden_state"]
        self.parent.assertFalse(torch.isnan(output).any().item())

274
275
276
277
278
279
280
281
282
283
284
285
    def create_and_check_with_sequence_classification_head(
        self,
        config,
        input_dict,
    ):
        labels = torch.tensor([1] * self.batch_size, dtype=torch.long, device=torch_device)
        model = UMT5ForSequenceClassification(config=config).to(torch_device).eval()
        outputs = model(**input_dict, labels=labels)
        # self.parent.assertEqual(len(outputs), 4)
        self.parent.assertEqual(outputs["logits"].size(), (self.batch_size, config.num_labels))
        self.parent.assertEqual(outputs["loss"].size(), ())

286
287
288
289

@require_torch
class UMT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
290
291
292
        (UMT5Model, UMT5ForConditionalGeneration, UMT5ForSequenceClassification, UMT5ForQuestionAnswering)
        if is_torch_available()
        else ()
293
294
295
296
297
298
    )
    all_generative_model_classes = (UMT5ForConditionalGeneration,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "conversational": UMT5ForConditionalGeneration,
            "feature-extraction": UMT5Model,
299
            "question-answering": UMT5ForQuestionAnswering,
300
            "summarization": UMT5ForConditionalGeneration,
301
            "text-classification": UMT5ForSequenceClassification,
302
303
            "text2text-generation": UMT5ForConditionalGeneration,
            "translation": UMT5ForConditionalGeneration,
304
            "zero-shot": UMT5ForSequenceClassification,
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
        }
        if is_torch_available()
        else {}
    )
    is_encoder_decoder = True
    fx_compatible = False
    test_pruning = False
    test_missing_keys = True
    test_torchscript = True
    # The small UMT5 model needs higher percentages for CPU/MP tests
    model_split_percents = [0.8, 0.9]

    def setUp(self):
        self.model_tester = UMT5ModelTester(self)

320
321
322
323
324
325
326
327
328
329
    # `QAPipelineTests` is not working well with slow tokenizers (for some models) and we don't want to touch the file
    # `src/transformers/data/processors/squad.py` (where this test fails for this model)
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name == "QAPipelineTests" and not tokenizer_name.endswith("Fast"):
            return True

        return False

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

        for model_class in self.all_model_classes:
            if model_class.__name__ == "UMT5ForSequenceClassification":
                continue
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
                        "decoder_input_ids",
                        "input_features",
                        "input_ids",
                        "input_values",
                    ]
                    if labels is not None:
                        input_names.append("labels")

                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = list(filtered_inputs.keys())

                    model_output = model(**filtered_inputs)

                    traced_model = symbolic_trace(model, input_names)
                    traced_output = traced_model(**filtered_inputs)
                else:
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
                    ]

                    labels = inputs.get("labels", None)
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
                    if labels is not None:
                        input_names.append("labels")
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")

                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = list(filtered_inputs.keys())

                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
                    ):
                        model.config.problem_type = "single_label_classification"

                    traced_model = symbolic_trace(model, input_names)
                    traced_output = traced_model(**filtered_inputs)
                    model_output = model(**filtered_inputs)

            except Exception as e:
                self.fail(f"Couldn't trace module: {e}")

            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
            num_outputs = len(model_output)

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )

            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

    # UMT5ForSequenceClassification does not support inputs_embeds
    def test_inputs_embeds(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in (UMT5Model, UMT5ForConditionalGeneration, UMT5ForQuestionAnswering):
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))

            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs["inputs_embeds"] = wte(input_ids)
            else:
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)

            with torch.no_grad():
                model(**inputs)[0]

    def test_with_sequence_classification_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_with_sequence_classification_head(*config_and_inputs)

484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
    @unittest.skip("Test has a segmentation fault on torch 1.8.0")
    def test_export_to_onnx(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        model = UMT5Model(config_and_inputs[0]).to(torch_device)
        with tempfile.TemporaryDirectory() as tmpdirname:
            torch.onnx.export(
                model,
                (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
                f"{tmpdirname}/t5_test.onnx",
                export_params=True,
                opset_version=9,
                input_names=["input_ids", "decoder_input_ids"],
            )

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)

    def test_generate_with_head_masking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        config = config_and_inputs[0]
        model = UMT5ForConditionalGeneration(config).eval()
        model.to(torch_device)

        head_masking = {
            "head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device),
            "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device),
            "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device),
        }

        for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
            head_masks = {name: mask}
            # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
            if name == "head_mask":
                head_masks["decoder_head_mask"] = torch.ones(
                    config.num_decoder_layers, config.num_heads, device=torch_device
                )

            out = model.generate(
                config_and_inputs[1]["input_ids"],
                num_beams=1,
                max_length=3,
                output_attentions=True,
                return_dict_in_generate=True,
                **head_masks,
            )
            # We check the state of decoder_attentions and cross_attentions just from the last step
            attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
            self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

    @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
    def test_disk_offload(self):
        pass


@require_torch
@require_sentencepiece
@require_tokenizers
class Umt5IntegrationTest(unittest.TestCase):
    @slow
546
547
548
    @unittest.skip(
        "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged"
    )
549
550
551
552
553
554
    def test_small_integration_test(self):
        """
        For comparison run the kaggle notbook available here : https://www.kaggle.com/arthurzucker/umt5-inference
        """

        model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small", return_dict=True).to(torch_device)
555
        tokenizer = AutoTokenizer.from_pretrained("google/umt5-small", use_fast=False, legacy=False)
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        input_text = [
            "Bonjour monsieur <extra_id_0> bien <extra_id_1>.",
            "No se como puedo <extra_id_0>.",
            "This is the reason why we <extra_id_0> them.",
            "The <extra_id_0> walks in <extra_id_1>, seats",
            "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
        ]
        input_ids = tokenizer(input_text, return_tensors="pt", padding=True).input_ids
        # fmt: off
        EXPECTED_IDS = torch.tensor(
            [
                [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [   826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [  1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
                [   517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [   320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
            ]
        )
        # fmt: on
575
        torch.testing.assert_allclose(input_ids, EXPECTED_IDS)
576
577
578
579
580
581
582
583
584
585

        generated_ids = model.generate(input_ids.to(torch_device))
        EXPECTED_FILLING = [
            "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 <extra_id_56>aj拧ietosto<extra_id_56>lleux<extra_id_19><extra_id_6>aj拧ie</s>",
            "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 頂柬暣[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
        ]
        filling = tokenizer.batch_decode(generated_ids)
586
        self.assertEqual(filling, EXPECTED_FILLING)