test_modeling_umt5.py 16.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

from transformers import T5Config, is_torch_available
from transformers.testing_utils import (
    require_sentencepiece,
    require_tokenizers,
    require_torch,
    slow,
    torch_device,
)

from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin


if is_torch_available():
    import torch

    from transformers import AutoTokenizer, UMT5ForConditionalGeneration, UMT5ForQuestionAnswering, UMT5Model


38
# Copied from test.models.t5.test_modeling_t5.T5ModelTester with T5->UMT5
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
class UMT5ModelTester:
    def __init__(
        self,
        parent,
        vocab_size=99,
        batch_size=13,
        encoder_seq_length=7,
        decoder_seq_length=9,
        # For common tests
        is_training=True,
        use_attention_mask=True,
        use_labels=False,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        d_ff=37,
        relative_attention_num_buckets=8,
        dropout_rate=0.1,
        initializer_factor=0.002,
        eos_token_id=1,
        pad_token_id=0,
        decoder_start_token_id=0,
        scope=None,
        decoder_layers=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.encoder_seq_length = encoder_seq_length
        self.decoder_seq_length = decoder_seq_length
        # For common tests
        self.seq_length = self.decoder_seq_length
        self.is_training = is_training
        self.use_attention_mask = use_attention_mask
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.d_ff = d_ff
        self.relative_attention_num_buckets = relative_attention_num_buckets
        self.dropout_rate = dropout_rate
        self.initializer_factor = initializer_factor
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        self.scope = None
        self.decoder_layers = decoder_layers

    def get_large_model_config(self):
        return T5Config.from_pretrained("google/umt5-base")

    def prepare_inputs_dict(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask=None,
        decoder_attention_mask=None,
        head_mask=None,
        decoder_head_mask=None,
        cross_attn_head_mask=None,
    ):
        if attention_mask is None:
            attention_mask = input_ids.ne(config.pad_token_id)
        if decoder_attention_mask is None:
            decoder_attention_mask = decoder_input_ids.ne(config.pad_token_id)
        if head_mask is None:
            head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=torch_device)
        if decoder_head_mask is None:
            decoder_head_mask = torch.ones(config.num_decoder_layers, config.num_attention_heads, device=torch_device)
        if cross_attn_head_mask is None:
            cross_attn_head_mask = torch.ones(
                config.num_decoder_layers, config.num_attention_heads, device=torch_device
            )
        return {
            "input_ids": input_ids,
            "decoder_input_ids": decoder_input_ids,
            "attention_mask": attention_mask,
            "decoder_attention_mask": decoder_attention_mask,
            "head_mask": head_mask,
            "decoder_head_mask": decoder_head_mask,
            "cross_attn_head_mask": cross_attn_head_mask,
        }

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
        decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)

        # we need to clamp the input ids here to avoid having pad token in between
        # this is because for NllbMoe the position_ids are prepared such that
        # all pad tokens have pos id = 2 and rest are between 2..seq_length
        # and the seq_length here is seq_length - num_pad_tokens
        # but when using past, there is no way of knowing if the past input ids had
        # pad tokens in them, which results in incorrect seq_lenth and which in turn results in
        # position_ids being off by num_pad_tokens in past input
        input_ids = input_ids.clamp(self.pad_token_id + 1)
        decoder_input_ids = decoder_input_ids.clamp(self.pad_token_id + 1)

        config = self.get_config()
        config.encoder_attention_heads = config.num_attention_heads
        input_dict = self.prepare_inputs_dict(config, input_ids, decoder_input_ids)
        return config, input_dict

    def prepare_config_and_inputs_for_common(self):
        config, inputs_dict = self.prepare_config_and_inputs()
        return config, inputs_dict

    def get_pipeline_config(self):
        return T5Config(
            vocab_size=166,  # t5 forces 100 extra tokens
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def get_config(self):
        return T5Config(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            d_ff=self.d_ff,
            d_kv=self.hidden_size // self.num_attention_heads,
            num_layers=self.num_hidden_layers,
            num_decoder_layers=self.decoder_layers,
            num_heads=self.num_attention_heads,
            relative_attention_num_buckets=self.relative_attention_num_buckets,
            dropout_rate=self.dropout_rate,
            initializer_factor=self.initializer_factor,
            eos_token_id=self.eos_token_id,
            bos_token_id=self.pad_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.decoder_start_token_id,
        )

    def create_and_check_model(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UMT5Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(
            input_ids=input_ids,
            decoder_input_ids=decoder_input_ids,
            attention_mask=attention_mask,
            decoder_attention_mask=decoder_attention_mask,
        )
        result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
        decoder_output = result.last_hidden_state
        decoder_past = result.past_key_values
        encoder_output = result.encoder_last_hidden_state

        self.parent.assertEqual(encoder_output.size(), (self.batch_size, self.encoder_seq_length, self.hidden_size))
        self.parent.assertEqual(decoder_output.size(), (self.batch_size, self.decoder_seq_length, self.hidden_size))
        # There should be `num_layers` key value embeddings stored in decoder_past
        self.parent.assertEqual(len(decoder_past), config.num_layers)
        # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
        self.parent.assertEqual(len(decoder_past[0]), 4)

    def create_and_check_decoder_model_past(
        self,
        config,
        input_ids,
        decoder_input_ids,
        attention_mask,
        decoder_attention_mask,
        lm_labels,
    ):
        model = UMT5Model(config=config).get_decoder().to(torch_device).eval()
        # first forward pass
        outputs = model(input_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids)
        outputs_no_past = model(input_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

        output, past_key_values = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # append to next input_ids and
        next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)

        output_from_no_past = model(next_input_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, past_key_values=past_key_values)["last_hidden_state"]

        # select random slice
        random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx].detach()
        output_from_past_slice = output_from_past[:, 0, random_slice_idx].detach()

        # test that outputs are equal for slice
        self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))

    def create_and_check_model_fp16_forward(
        self,
        config,
        input_dict,
    ):
        model = UMT5Model(config=config).to(torch_device).half().eval()
        output = model(**input_dict)["last_hidden_state"]
        self.parent.assertFalse(torch.isnan(output).any().item())


@require_torch
class UMT5ModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
    all_model_classes = (
        (UMT5Model, UMT5ForConditionalGeneration, UMT5ForQuestionAnswering) if is_torch_available() else ()
    )
    all_generative_model_classes = (UMT5ForConditionalGeneration,) if is_torch_available() else ()
    pipeline_model_mapping = (
        {
            "conversational": UMT5ForConditionalGeneration,
            "feature-extraction": UMT5Model,
            "summarization": UMT5ForConditionalGeneration,
            "text2text-generation": UMT5ForConditionalGeneration,
            "translation": UMT5ForConditionalGeneration,
            "question-answering": UMT5ForQuestionAnswering,
        }
        if is_torch_available()
        else {}
    )
    is_encoder_decoder = True
    fx_compatible = False
    test_pruning = False
    test_missing_keys = True
    test_torchscript = True
    # The small UMT5 model needs higher percentages for CPU/MP tests
    model_split_percents = [0.8, 0.9]

    def setUp(self):
        self.model_tester = UMT5ModelTester(self)

    @unittest.skip("Test has a segmentation fault on torch 1.8.0")
    def test_export_to_onnx(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        model = UMT5Model(config_and_inputs[0]).to(torch_device)
        with tempfile.TemporaryDirectory() as tmpdirname:
            torch.onnx.export(
                model,
                (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]),
                f"{tmpdirname}/t5_test.onnx",
                export_params=True,
                opset_version=9,
                input_names=["input_ids", "decoder_input_ids"],
            )

    @unittest.skipIf(torch_device == "cpu", "Cant do half precision")
    def test_model_fp16_forward(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_fp16_forward(*config_and_inputs)

    def test_generate_with_head_masking(self):
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        config = config_and_inputs[0]
        model = UMT5ForConditionalGeneration(config).eval()
        model.to(torch_device)

        head_masking = {
            "head_mask": torch.zeros(config.num_layers, config.num_heads, device=torch_device),
            "decoder_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device),
            "cross_attn_head_mask": torch.zeros(config.num_decoder_layers, config.num_heads, device=torch_device),
        }

        for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
            head_masks = {name: mask}
            # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
            if name == "head_mask":
                head_masks["decoder_head_mask"] = torch.ones(
                    config.num_decoder_layers, config.num_heads, device=torch_device
                )

            out = model.generate(
                config_and_inputs[1]["input_ids"],
                num_beams=1,
                max_length=3,
                output_attentions=True,
                return_dict_in_generate=True,
                **head_masks,
            )
            # We check the state of decoder_attentions and cross_attentions just from the last step
            attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
            self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

    @unittest.skip("Does not work on the tiny model as we keep hitting edge cases.")
    def test_disk_offload(self):
        pass


@require_torch
@require_sentencepiece
@require_tokenizers
class Umt5IntegrationTest(unittest.TestCase):
    @slow
    def test_small_integration_test(self):
        """
        For comparison run the kaggle notbook available here : https://www.kaggle.com/arthurzucker/umt5-inference
        """

        model = UMT5ForConditionalGeneration.from_pretrained("google/umt5-small", return_dict=True).to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("google/umt5-small", use_fast=False)
        input_text = [
            "Bonjour monsieur <extra_id_0> bien <extra_id_1>.",
            "No se como puedo <extra_id_0>.",
            "This is the reason why we <extra_id_0> them.",
            "The <extra_id_0> walks in <extra_id_1>, seats",
            "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.",
        ]
        input_ids = tokenizer(input_text, return_tensors="pt", padding=True).input_ids
        # fmt: off
        EXPECTED_IDS = torch.tensor(
            [
                [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [   826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [  1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
                [   517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
                [   320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
            ]
        )
        # fmt: on
        self.assertEqual(input_ids, EXPECTED_IDS)

        generated_ids = model.generate(input_ids.to(torch_device))
        EXPECTED_FILLING = [
            "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 馃拹 <extra_id_56>aj拧ietosto<extra_id_56>lleux<extra_id_19><extra_id_6>aj拧ie</s>",
            "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 頂柬暣[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
            "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>",
        ]
        filling = tokenizer.batch_decode(generated_ids)
        self.assertTrue(filling, EXPECTED_FILLING)