"vscode:/vscode.git/clone" did not exist on "06faed0cde9c9e2c48ab1531badbf722c8404c22"
test_modeling_tf_gpt2.py 32.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
18
from transformers import GPT2Config, is_tf_available
19
from transformers.testing_utils import require_tf, require_tf2onnx, slow
thomwolf's avatar
thomwolf committed
20

Yih-Dar's avatar
Yih-Dar committed
21
22
23
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin
thomwolf's avatar
thomwolf committed
24
25


26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28

29
    from transformers import GPT2Tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
30
    from transformers.models.gpt2.modeling_tf_gpt2 import (
31
        TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        TFGPT2DoubleHeadsModel,
33
        TFGPT2ForSequenceClassification,
34
35
        TFGPT2LMHeadModel,
        TFGPT2Model,
36
    )
37
    from transformers.tf_utils import shape_list
thomwolf's avatar
thomwolf committed
38
39


40
41
class TFGPT2ModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.bos_token_id = self.vocab_size - 1
        self.eos_token_id = self.vocab_size - 1
70
        self.pad_token_id = self.vocab_size - 1
71
72
73
74
75
76

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
77
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
109
110
            pad_token_id=self.pad_token_id,
            return_dict=True,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

156
157
158
159
160
161
162
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
163
        result = model(inputs)
164
165

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
166
        result = model(inputs)
167

Sylvain Gugger's avatar
Sylvain Gugger committed
168
        result = model(input_ids)
169

170
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
171
172
173
174
175

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)

        # first forward pass
176
177
178
179
180
181
182
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
183
        output, past = outputs.to_tuple()
184
185
186
187
188
189
190
191
192

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
216
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
237
238
239
240
241
242
243
244
245

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)

246
247
248
249
250
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

251
252
253
254
255
        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        token_type_ids = token_type_ids[:1, :]
        self.batch_size = 1

256
        # first forward pass
257
        outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True)
258
259
260
261
262

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
263
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
264
        next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size)
265
266
267

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
268
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
269
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
270
271
272
273
274
275
276

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past
        )["last_hidden_state"]
277
278
279
280
281
282
283
284
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
285
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
286

287
288
289
290
291
292
293
    def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2LMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
294
        result = model(inputs)
295
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

    def create_and_check_gpt2_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFGPT2DoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
312
        result = model(inputs)
313
        self.parent.assertEqual(
314
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
315
        )
316
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFGPT2ForSequenceClassification(config)

        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
        return config, inputs_dict


356
@require_tf
357
class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, unittest.TestCase):
358
359
360
361
362
    all_model_classes = (
        (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel)
        if is_tf_available()
        else ()
    )
363
    all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
364
    test_head_masking = False
365
366
    test_onnx = True
    onnx_min_opset = 10
thomwolf's avatar
thomwolf committed
367
368

    def setUp(self):
369
        self.model_tester = TFGPT2ModelTester(self)
370
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
371
372
373
374
375
376
377
378

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)

379
380
381
382
383
384
385
386
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

387
388
389
390
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
391
392
393
394
395
396
397
398
    def test_gpt2_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)

    def test_gpt2_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)

399
400
401
402
403
404
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
405
406
407
408
409
410
411
412
413
414
415

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
416

417
418
419
420
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

421
    @slow
thomwolf's avatar
thomwolf committed
422
    def test_model_from_pretrained(self):
423
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
424
            model = TFGPT2Model.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
425
            self.assertIsNotNone(model)
426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
    # overwrite from common since ONNX runtime optimization doesn't work with tf.gather() when the argument
    # `batch_dims` > 0"
    @require_tf2onnx
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
        import tf2onnx

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            # Skip these 2 classes which uses `tf.gather` with `batch_dims=1`
            if model_class in [TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel]:
                continue

            model = model_class(config)
            model(model.dummy_inputs)

            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)

            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())

452
453
454
455
456
    # TODO (Joao): fix me
    @unittest.skip("Onnx compliancy broke with TF 2.10")
    def test_onnx_compliancy(self):
        pass

457

458
@require_tf
459
460
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
    @slow
461
    def test_lm_generate_greedy_distilgpt2_batch_special(self):
462
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
463
464
465
466
467
468
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
469
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
470
471
472
473
474
475
476
477

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "repetition_penalty": 1.3,
        }

478
        output_ids = model.generate(**input_ids, **generation_kwargs)
479
480
481
482

        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        expected_output_string = [
            "Today is a beautiful day and I am so happy to be able take part in this amazing event.",
483
            "Yesterday was a very interesting time for the world to see how much of this is",
484
485
486
        ]
        self.assertListEqual(output_strings, expected_output_string)

487
488
489
490
491
492
493
494
495
    @slow
    def test_lm_generate_sample_distilgpt2_batch_special(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
496
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
497
498
499
500
501
502
503
504
505

        generation_kwargs = {
            "do_sample": True,
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.3,
            "temperature": 1.5,
            "top_k": 500,
            "top_p": 0.9,
506
            "seed": [42, 0],  # seed set -> deterministic sampling sequence -> deterministic generation
507
508
        }

509
510
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
511
            output_ids = model.generate(**input_ids, **generation_kwargs)
512

513
514
515
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        expected_output_string = [
516
517
            "Today is a beautiful day and we will make you feel very hot/terrific in all your",
            "Yesterday was known by national television networks as Le Big Show or Wild Dog Jeopard",
518
519
520
        ]
        self.assertListEqual(output_strings, expected_output_string)

521
522
523
524
525
526
527
528
529
    @slow
    def test_lm_generate_greedy_distilgpt2_beam_search_special(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
530
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
531
532
533
534
535
536
537
538

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "num_beams": 2,
        }

539
        output_ids = model.generate(**input_ids, **generation_kwargs)
540
541
542

        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        expected_output_string = [
543
            "Today is a beautiful day and a great day for all of us.\n\nI鈥檓",
544
            "Yesterday was the first time that a person has been arrested in the United States for",
545
546
547
        ]
        self.assertListEqual(output_strings, expected_output_string)

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
    @slow
    def test_lm_generate_distilgpt2_left_padding(self):
        """Tests that the generated text is the same, regarless of left padding"""
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "repetition_penalty": 1.3,
        }
        expected_output_string = (
            "Today is a beautiful day and I am so happy to be able take part in this amazing event."
        )

        sentences = ["Today is a beautiful day and"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
        # using default length
        output_ids = model.generate(**input_ids, **generation_kwargs)
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertEqual(output_strings[0], expected_output_string)

        sentences = ["Today is a beautiful day and", "This is a very long input that we absolutely don't care about"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
        # longer max length to capture the full length (remember: it is left padded)
        output_ids = model.generate(**input_ids, **generation_kwargs, max_length=27)
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertEqual(output_strings[0], expected_output_string)

581
    @slow
582
    def test_lm_generate_gpt2_greedy_xla(self):
583
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
584
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
585

586
587
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"
Matt's avatar
Matt committed
588

589
        sentences = ["The dog", "The flying machine"]
590
        expected_output_strings = [
591
592
            "The dog was found in a field near the intersection of West and West Streets.\n\nThe",
            "The flying machine is a small, lightweight, and lightweight aircraft that can be used for any type of",
593
        ]
594
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
Matt's avatar
Matt committed
595

596
        output_ids = model.generate(**input_ids, do_sample=False)
597
598
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertListEqual(output_strings, expected_output_strings)
Matt's avatar
Matt committed
599

600
        xla_generate = tf.function(model.generate, jit_compile=True)
601
        output_ids = xla_generate(**input_ids, do_sample=False)
602
603
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertListEqual(output_strings, expected_output_strings)
604
605

    @slow
606
607
608
609
    def test_lm_generate_gpt2_sample_xla(self):
        # NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same
        # output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible
        # and that we can seed both versions.
610

Joao Gante's avatar
Joao Gante committed
611
612
613
614
615
616
617
618
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
            model = TFGPT2LMHeadModel.from_pretrained("gpt2")
            tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

            tokenizer.pad_token = tokenizer.eos_token
            tokenizer.padding_side = "left"

619
            sentence = ["The dog", "The flying machine"]
Joao Gante's avatar
Joao Gante committed
620
            expected_output_string = [
Sylvain Gugger's avatar
Sylvain Gugger committed
621
                "The dog owner asked why did our vet decide there needed to be extra ventilation inside because most"
622
623
                " puppies",
                "The flying machine was made by an artist who found it difficult to control it as it did not use",
Joao Gante's avatar
Joao Gante committed
624
625
            ]
            expected_output_string_xla = [
626
627
628
                "The dog has been named in connection with the murder of a 20-year-old man in",
                "The flying machine is a new and improved system to operate and operate a new system and system "
                "system system",
Joao Gante's avatar
Joao Gante committed
629
            ]
630
            input_ids = tokenizer(sentence, return_tensors="tf", padding=True)
Joao Gante's avatar
Joao Gante committed
631

632
            output_ids = model.generate(**input_ids, do_sample=True, seed=[7, 0])
Joao Gante's avatar
Joao Gante committed
633
634
635
636
            output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            self.assertListEqual(output_strings, expected_output_string)

            xla_generate = tf.function(model.generate, jit_compile=True)
637
            output_ids = xla_generate(**input_ids, do_sample=True, seed=[7, 0])
Joao Gante's avatar
Joao Gante committed
638
639
            output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            self.assertListEqual(output_strings, expected_output_string_xla)
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

    @slow
    def test_lm_generate_gpt2_beam_search_xla(self):
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["The dog", "The flying machine"]
        expected_output_strings = [
            "The dog was found in the backyard of a home in the 6500 block of South Main Street",
            "The flying machine is a very powerful machine, but it's not a very powerful machine. It's",
        ]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)

        output_ids = model.generate(**input_ids, do_sample=False, num_beams=2)
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertListEqual(output_strings, expected_output_strings)

        xla_generate = tf.function(model.generate, jit_compile=True)
        output_ids = xla_generate(**input_ids, do_sample=False, num_beams=2)
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertListEqual(output_strings, expected_output_strings)
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

    @slow
    def test_contrastive_search_gpt2(self):
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
            "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )

        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
        gpt2_model = TFGPT2LMHeadModel.from_pretrained("gpt2-large")
        input_ids = gpt2_tokenizer(article, return_tensors="tf")

        outputs = gpt2_model.generate(**input_ids, penalty_alpha=0.6, top_k=4, max_length=256)

        generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as "
                "Google Now, which helps users find the information they're looking for on the web. But the company "
                "is not the only one to collect data on its users. Facebook, for example, has its own facial "
                "recognition technology, as well as a database of millions of photos that it uses to personalize its "
                "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates "
                "concerned about the company's ability to keep users' information private. In a blog post last "
                'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our '
                'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with '
                'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at '
                'privacy@facebook.com."\n\nGoogle declined to comment on the privacy implications of its use of data, '
                "but said in a statement to The Associated Press that"
            ],
        )

    @slow
    def test_contrastive_search_gpt2_xla(self):
        article = (
            "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
            "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based"
        )

        gpt2_tokenizer = GPT2Tokenizer.from_pretrained("gpt2-large")
        gpt2_model = TFGPT2LMHeadModel.from_pretrained("gpt2-large")
        input_ids = gpt2_tokenizer(article, return_tensors="tf")

        xla_generate = tf.function(gpt2_model.generate, jit_compile=True)
        outputs = xla_generate(**input_ids, penalty_alpha=0.6, top_k=4, max_length=256)

        generated_text = gpt2_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
                "DeepMind Technologies is a British artificial intelligence subsidiary of Alphabet Inc. and research "
                "laboratory founded in 2010. DeepMind was acquired by Google in 2014. The company is based in London, "
                "United Kingdom\n\nGoogle has a lot of data on its users and uses it to improve its products, such as "
                "Google Now, which helps users find the information they're looking for on the web. But the company "
                "is not the only one to collect data on its users. Facebook, for example, has its own facial "
                "recognition technology, as well as a database of millions of photos that it uses to personalize its "
                "News Feed.\n\nFacebook's use of data is a hot topic in the tech industry, with privacy advocates "
                "concerned about the company's ability to keep users' information private. In a blog post last "
                'year, Facebook CEO Mark Zuckerberg said his company would "do our best to be transparent about our '
                'data use and how we use it."\n\n"We have made it clear that we do not sell or share your data with '
                'third parties," Zuckerberg wrote. "If you have questions or concerns, please reach out to us at '
                'privacy@facebook.com."\n\nGoogle declined to comment on the privacy implications of its use of data, '
                "but said in a statement to The Associated Press that"
            ],
        )