test_modeling_tf_gpt2.py 27.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
17
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
18
from transformers import GPT2Config, is_tf_available
19
from transformers.testing_utils import require_tf, require_tf2onnx, slow
thomwolf's avatar
thomwolf committed
20

Yih-Dar's avatar
Yih-Dar committed
21
22
23
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...utils.test_modeling_tf_core import TFCoreModelTesterMixin
thomwolf's avatar
thomwolf committed
24
25


26
if is_tf_available():
thomwolf's avatar
thomwolf committed
27
    import tensorflow as tf
28

29
    from transformers import GPT2Tokenizer
Sylvain Gugger's avatar
Sylvain Gugger committed
30
    from transformers.models.gpt2.modeling_tf_gpt2 import (
31
        TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        TFGPT2DoubleHeadsModel,
33
        TFGPT2ForSequenceClassification,
34
35
        TFGPT2LMHeadModel,
        TFGPT2Model,
36
    )
37
    from transformers.tf_utils import shape_list
thomwolf's avatar
thomwolf committed
38
39


40
41
class TFGPT2ModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
42
43
        self,
        parent,
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
        self.bos_token_id = self.vocab_size - 1
        self.eos_token_id = self.vocab_size - 1
70
        self.pad_token_id = self.vocab_size - 1
71
72
73
74
75
76

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
77
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = GPT2Config(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
            # initializer_range=self.initializer_range
            bos_token_id=self.bos_token_id,
            eos_token_id=self.eos_token_id,
109
110
            pad_token_id=self.pad_token_id,
            return_dict=True,
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    def prepare_config_and_inputs_for_decoder(self):
        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = self.prepare_config_and_inputs()

        encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
        encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            sequence_labels,
            token_labels,
            choice_labels,
            encoder_hidden_states,
            encoder_attention_mask,
        )

156
157
158
159
160
161
162
    def create_and_check_gpt2_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
163
        result = model(inputs)
164
165

        inputs = [input_ids, None, input_mask]  # None is the input for 'past'
Sylvain Gugger's avatar
Sylvain Gugger committed
166
        result = model(inputs)
167

Sylvain Gugger's avatar
Sylvain Gugger committed
168
        result = model(input_ids)
169

170
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
171
172
173
174
175

    def create_and_check_gpt2_model_past(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2Model(config=config)

        # first forward pass
176
177
178
179
180
181
182
        outputs = model(input_ids, token_type_ids=token_type_ids, use_cache=True)
        outputs_use_cache_conf = model(input_ids, token_type_ids=token_type_ids)
        outputs_no_past = model(input_ids, token_type_ids=token_type_ids, use_cache=False)

        self.parent.assertTrue(len(outputs) == len(outputs_use_cache_conf))
        self.parent.assertTrue(len(outputs) == len(outputs_no_past) + 1)

Sylvain Gugger's avatar
Sylvain Gugger committed
183
        output, past = outputs.to_tuple()
184
185
186
187
188
189
190
191
192

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)
        next_token_types = ids_tensor([self.batch_size, 1], self.type_vocab_size)

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)

Sylvain Gugger's avatar
Sylvain Gugger committed
193
194
        output_from_no_past = model(next_input_ids, token_type_ids=next_token_type_ids)["last_hidden_state"]
        output_from_past = model(next_tokens, token_type_ids=next_token_types, past=past)["last_hidden_state"]
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-6)

    def create_and_check_gpt2_model_attention_mask_past(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

        # create attention mask
        half_seq_length = self.seq_length // 2
        attn_mask_begin = tf.ones((self.batch_size, half_seq_length), dtype=tf.int32)
        attn_mask_end = tf.zeros((self.batch_size, self.seq_length - half_seq_length), dtype=tf.int32)
        attn_mask = tf.concat([attn_mask_begin, attn_mask_end], axis=1)

        # first forward pass
Sylvain Gugger's avatar
Sylvain Gugger committed
216
        output, past = model(input_ids, attention_mask=attn_mask).to_tuple()
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 1), config.vocab_size)

        # change a random masked slice from input_ids
        random_seq_idx_to_change = ids_tensor((1,), half_seq_length).numpy() + 1
        random_other_next_tokens = ids_tensor((self.batch_size, self.seq_length), config.vocab_size)
        vector_condition = tf.range(self.seq_length) == (self.seq_length - random_seq_idx_to_change)
        condition = tf.transpose(
            tf.broadcast_to(tf.expand_dims(vector_condition, -1), (self.seq_length, self.batch_size))
        )
        input_ids = tf.where(condition, random_other_next_tokens, input_ids)

        # append to next input_ids and attn_mask
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        attn_mask = tf.concat([attn_mask, tf.ones((shape_list(attn_mask)[0], 1), dtype=tf.int32)], axis=1)

        # get two different outputs
Sylvain Gugger's avatar
Sylvain Gugger committed
235
236
        output_from_no_past = model(next_input_ids, attention_mask=attn_mask)["last_hidden_state"]
        output_from_past = model(next_tokens, past=past, attention_mask=attn_mask)["last_hidden_state"]
237
238
239
240
241
242
243
244
245

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -1, random_slice_idx]
        output_from_past_slice = output_from_past[:, 0, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-12)

246
247
248
249
250
    def create_and_check_gpt2_model_past_large_inputs(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        model = TFGPT2Model(config=config)

251
252
253
254
255
        input_ids = input_ids[:1, :]
        input_mask = input_mask[:1, :]
        token_type_ids = token_type_ids[:1, :]
        self.batch_size = 1

256
        # first forward pass
257
        outputs = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, use_cache=True)
258
259
260
261
262

        output, past = outputs.to_tuple()

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
263
        next_attn_mask = ids_tensor((self.batch_size, 3), 2)
264
        next_token_types = ids_tensor((self.batch_size, 3), self.type_vocab_size)
265
266
267

        # append to next input_ids and token_type_ids
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
268
        next_attention_mask = tf.concat([input_mask, next_attn_mask], axis=-1)
269
        next_token_type_ids = tf.concat([token_type_ids, next_token_types], axis=-1)
270
271
272
273
274
275
276

        output_from_no_past = model(
            next_input_ids, token_type_ids=next_token_type_ids, attention_mask=next_attention_mask
        )["last_hidden_state"]
        output_from_past = model(
            next_tokens, token_type_ids=next_token_types, attention_mask=next_attention_mask, past=past
        )["last_hidden_state"]
277
278
279
280
281
282
283
284
        self.parent.assertTrue(output_from_past.shape[1] == next_tokens.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), shape_list(output_from_past)[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
285
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)
286

287
288
289
290
291
292
293
    def create_and_check_gpt2_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFGPT2LMHeadModel(config=config)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
294
        result = model(inputs)
295
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

    def create_and_check_gpt2_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFGPT2DoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
312
        result = model(inputs)
313
        self.parent.assertEqual(
314
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
315
        )
316
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
    def create_and_check_gpt2_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, *args
    ):
        config.num_labels = self.num_labels
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFGPT2ForSequenceClassification(config)

        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {
            "input_ids": input_ids,
            "token_type_ids": token_type_ids,
            "attention_mask": input_mask,
        }
        return config, inputs_dict


356
@require_tf
357
class TFGPT2ModelTest(TFModelTesterMixin, TFCoreModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
358

359
360
361
362
363
    all_model_classes = (
        (TFGPT2Model, TFGPT2LMHeadModel, TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel)
        if is_tf_available()
        else ()
    )
364
    all_generative_model_classes = (TFGPT2LMHeadModel,) if is_tf_available() else ()
365
    test_head_masking = False
366
367
    test_onnx = True
    onnx_min_opset = 10
thomwolf's avatar
thomwolf committed
368
369

    def setUp(self):
370
        self.model_tester = TFGPT2ModelTester(self)
371
        self.config_tester = ConfigTester(self, config_class=GPT2Config, n_embd=37)
thomwolf's avatar
thomwolf committed
372
373
374
375
376
377
378
379

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_gpt2_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model(*config_and_inputs)

380
381
382
383
384
385
386
387
    def test_gpt2_model_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past(*config_and_inputs)

    def test_gpt2_model_att_mask_past(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_attention_mask_past(*config_and_inputs)

388
389
390
391
    def test_gpt2_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_model_past_large_inputs(*config_and_inputs)

thomwolf's avatar
thomwolf committed
392
393
394
395
396
397
398
399
    def test_gpt2_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_lm_head(*config_and_inputs)

    def test_gpt2_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_double_head(*config_and_inputs)

400
401
402
403
404
405
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
406
407
408
409
410
411
412
413
414
415
416

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
417

418
419
420
421
    def test_gpt2_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_gpt2_for_sequence_classification(*config_and_inputs)

422
    @slow
thomwolf's avatar
thomwolf committed
423
    def test_model_from_pretrained(self):
424
        for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
425
            model = TFGPT2Model.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
426
            self.assertIsNotNone(model)
427

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    # overwrite from common since ONNX runtime optimization doesn't work with tf.gather() when the argument
    # `batch_dims` > 0"
    @require_tf2onnx
    @slow
    def test_onnx_runtime_optimize(self):
        if not self.test_onnx:
            return

        import onnxruntime
        import tf2onnx

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:

            # Skip these 2 classes which uses `tf.gather` with `batch_dims=1`
            if model_class in [TFGPT2ForSequenceClassification, TFGPT2DoubleHeadsModel]:
                continue

            model = model_class(config)
            model(model.dummy_inputs)

            onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset)

            onnxruntime.InferenceSession(onnx_model_proto.SerializeToString())

454

455
@require_tf
456
457
class TFGPT2ModelLanguageGenerationTest(unittest.TestCase):
    @slow
458
    def test_lm_generate_greedy_distilgpt2_batch_special(self):
459
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
460
461
462
463
464
465
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
466
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
467
468
469
470
471
472
473
474

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "repetition_penalty": 1.3,
        }

475
        output_ids = model.generate(**input_ids, **generation_kwargs)
476
477
478
479

        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        expected_output_string = [
            "Today is a beautiful day and I am so happy to be able take part in this amazing event.",
480
            "Yesterday was a very interesting time for the world to see how much of this is",
481
482
483
        ]
        self.assertListEqual(output_strings, expected_output_string)

484
485
486
487
488
489
490
491
492
    @slow
    def test_lm_generate_sample_distilgpt2_batch_special(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
493
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
494
495
496
497
498
499
500
501
502

        generation_kwargs = {
            "do_sample": True,
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.3,
            "temperature": 1.5,
            "top_k": 500,
            "top_p": 0.9,
503
            "seed": [42, 0],  # seed set -> deterministic sampling sequence -> deterministic generation
504
505
        }

506
507
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
508
            output_ids = model.generate(**input_ids, **generation_kwargs)
509

510
511
512
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)

        expected_output_string = [
513
514
            "Today is a beautiful day and we will make you feel very hot/terrific in all your",
            "Yesterday was known by national television networks as Le Big Show or Wild Dog Jeopard",
515
516
517
        ]
        self.assertListEqual(output_strings, expected_output_string)

518
519
520
521
522
523
524
525
526
    @slow
    def test_lm_generate_greedy_distilgpt2_beam_search_special(self):
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["Today is a beautiful day and", "Yesterday was"]
527
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
528
529
530
531
532
533
534
535

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "num_beams": 2,
        }

536
        output_ids = model.generate(**input_ids, **generation_kwargs)
537
538
539

        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        expected_output_string = [
540
            "Today is a beautiful day and a great day for all of us.\n\nI鈥檓",
541
            "Yesterday was the first time that a person has been arrested in the United States for",
542
543
544
        ]
        self.assertListEqual(output_strings, expected_output_string)

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    @slow
    def test_lm_generate_distilgpt2_left_padding(self):
        """Tests that the generated text is the same, regarless of left padding"""
        model = TFGPT2LMHeadModel.from_pretrained("distilgpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        generation_kwargs = {
            "bad_words_ids": [tokenizer("is").input_ids, tokenizer("angry about").input_ids],
            "no_repeat_ngram_size": 2,
            "do_sample": False,
            "repetition_penalty": 1.3,
        }
        expected_output_string = (
            "Today is a beautiful day and I am so happy to be able take part in this amazing event."
        )

        sentences = ["Today is a beautiful day and"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
        # using default length
        output_ids = model.generate(**input_ids, **generation_kwargs)
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertEqual(output_strings[0], expected_output_string)

        sentences = ["Today is a beautiful day and", "This is a very long input that we absolutely don't care about"]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
        # longer max length to capture the full length (remember: it is left padded)
        output_ids = model.generate(**input_ids, **generation_kwargs, max_length=27)
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertEqual(output_strings[0], expected_output_string)

578
    @slow
579
    def test_lm_generate_gpt2_greedy_xla(self):
580
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
581
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
582

583
584
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"
Matt's avatar
Matt committed
585

586
        sentences = ["The dog", "The flying machine"]
587
        expected_output_strings = [
588
589
            "The dog was found in a field near the intersection of West and West Streets.\n\nThe",
            "The flying machine is a small, lightweight, and lightweight aircraft that can be used for any type of",
590
        ]
591
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)
Matt's avatar
Matt committed
592

593
        output_ids = model.generate(**input_ids, do_sample=False)
594
595
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertListEqual(output_strings, expected_output_strings)
Matt's avatar
Matt committed
596

597
        xla_generate = tf.function(model.generate, jit_compile=True)
598
        output_ids = xla_generate(**input_ids, do_sample=False)
599
600
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertListEqual(output_strings, expected_output_strings)
601
602

    @slow
603
604
605
606
    def test_lm_generate_gpt2_sample_xla(self):
        # NOTE: due to the small numerical differences that are natural when we compile to XLA, sampling the same
        # output out of the same seed is far from guaranteed. We can, however, confirm that the results are sensible
        # and that we can seed both versions.
607

Joao Gante's avatar
Joao Gante committed
608
609
610
611
612
613
614
615
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
            model = TFGPT2LMHeadModel.from_pretrained("gpt2")
            tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

            tokenizer.pad_token = tokenizer.eos_token
            tokenizer.padding_side = "left"

616
            sentence = ["The dog", "The flying machine"]
Joao Gante's avatar
Joao Gante committed
617
            expected_output_string = [
Sylvain Gugger's avatar
Sylvain Gugger committed
618
                "The dog owner asked why did our vet decide there needed to be extra ventilation inside because most"
619
620
                " puppies",
                "The flying machine was made by an artist who found it difficult to control it as it did not use",
Joao Gante's avatar
Joao Gante committed
621
622
            ]
            expected_output_string_xla = [
623
624
625
                "The dog has been named in connection with the murder of a 20-year-old man in",
                "The flying machine is a new and improved system to operate and operate a new system and system "
                "system system",
Joao Gante's avatar
Joao Gante committed
626
            ]
627
            input_ids = tokenizer(sentence, return_tensors="tf", padding=True)
Joao Gante's avatar
Joao Gante committed
628

629
            output_ids = model.generate(**input_ids, do_sample=True, seed=[7, 0])
Joao Gante's avatar
Joao Gante committed
630
631
632
633
            output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            self.assertListEqual(output_strings, expected_output_string)

            xla_generate = tf.function(model.generate, jit_compile=True)
634
            output_ids = xla_generate(**input_ids, do_sample=True, seed=[7, 0])
Joao Gante's avatar
Joao Gante committed
635
636
            output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            self.assertListEqual(output_strings, expected_output_string_xla)
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

    @slow
    def test_lm_generate_gpt2_beam_search_xla(self):
        model = TFGPT2LMHeadModel.from_pretrained("gpt2")
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"

        sentences = ["The dog", "The flying machine"]
        expected_output_strings = [
            "The dog was found in the backyard of a home in the 6500 block of South Main Street",
            "The flying machine is a very powerful machine, but it's not a very powerful machine. It's",
        ]
        input_ids = tokenizer(sentences, return_tensors="tf", padding=True)

        output_ids = model.generate(**input_ids, do_sample=False, num_beams=2)
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertListEqual(output_strings, expected_output_strings)

        xla_generate = tf.function(model.generate, jit_compile=True)
        output_ids = xla_generate(**input_ids, do_sample=False, num_beams=2)
        output_strings = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
        self.assertListEqual(output_strings, expected_output_strings)