test_seq2seq_examples.py 19.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import argparse
import logging
import os
import sys
import tempfile
import unittest
from pathlib import Path
from unittest.mock import patch

import pytest
11
import pytorch_lightning as pl
12
13
14
import torch
from torch.utils.data import DataLoader

15
import lightning_base
16
17
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.hf_api import HfApi
18
from transformers.modeling_bart import shift_tokens_right
19
from transformers.testing_utils import CaptureStderr, CaptureStdout, require_multigpu, require_torch_and_cuda, slow
20
21

from .distillation import distill_main, evaluate_checkpoint
22
from .finetune import SummarizationModule, main
23
from .pack_dataset import pack_data_dir
24
from .run_eval import generate_summaries_or_translations, run_generate
25
from .utils import LegacySeq2SeqDataset, Seq2SeqDataset, label_smoothed_nll_loss, lmap, load_json
26
27
28
29
30
31
32


logging.basicConfig(level=logging.DEBUG)

logger = logging.getLogger()
CUDA_AVAILABLE = torch.cuda.is_available()
CHEAP_ARGS = {
33
    "label_smoothing": 0.2,
Sam Shleifer's avatar
Sam Shleifer committed
34
    "adafactor": True,
35
    "early_stopping_patience": 2,
36
    "logger_name": "default",
37
38
39
40
41
42
43
44
45
46
47
48
49
    "length_penalty": 0.5,
    "cache_dir": "",
    "task": "summarization",
    "num_workers": 2,
    "alpha_hid": 0,
    "freeze_embeds": True,
    "enc_only": False,
    "tgt_suffix": "",
    "resume_from_checkpoint": None,
    "sortish_sampler": True,
    "student_decoder_layers": 1,
    "val_check_interval": 1.0,
    "output_dir": "",
Sam Shleifer's avatar
Sam Shleifer committed
50
    "fp16": False,  # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp
51
52
53
54
55
56
57
    "no_teacher": False,
    "fp16_opt_level": "O1",
    "gpus": 1 if CUDA_AVAILABLE else 0,
    "n_tpu_cores": 0,
    "max_grad_norm": 1.0,
    "do_train": True,
    "do_predict": True,
58
    "accumulate_grad_batches": 1,
59
60
61
62
63
64
65
66
    "server_ip": "",
    "server_port": "",
    "seed": 42,
    "model_name_or_path": "sshleifer/bart-tiny-random",
    "config_name": "",
    "tokenizer_name": "facebook/bart-large",
    "do_lower_case": False,
    "learning_rate": 0.3,
67
    "lr_scheduler": "linear",
68
69
70
    "weight_decay": 0.0,
    "adam_epsilon": 1e-08,
    "warmup_steps": 0,
71
    "max_epochs": 1,
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    "train_batch_size": 2,
    "eval_batch_size": 2,
    "max_source_length": 12,
    "max_target_length": 12,
    "val_max_target_length": 12,
    "test_max_target_length": 12,
    "fast_dev_run": False,
    "no_cache": False,
    "n_train": -1,
    "n_val": -1,
    "n_test": -1,
    "student_encoder_layers": 1,
    "alpha_loss_encoder": 0.0,
    "freeze_encoder": False,
    "auto_scale_batch_size": False,
}


def _dump_articles(path: Path, articles: list):
91
92
    content = "\n".join(articles)
    Path(path).open("w").writelines(content)
93
94


95
ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."]
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
T5_TINY = "patrickvonplaten/t5-tiny-random"
BART_TINY = "sshleifer/bart-tiny-random"
MBART_TINY = "sshleifer/tiny-mbart"
MARIAN_TINY = "sshleifer/tiny-marian-en-de"
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks


def make_test_data_dir(**kwargs):
    tmp_dir = Path(tempfile.mkdtemp(**kwargs))
    for split in ["train", "val", "test"]:
        _dump_articles((tmp_dir / f"{split}.source"), ARTICLES)
        _dump_articles((tmp_dir / f"{split}.target"), SUMMARIES)
    return tmp_dir


class TestSummarizationDistiller(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        logging.disable(logging.CRITICAL)  # remove noisy download output from tracebacks
        return cls

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    @slow
    @require_torch_and_cuda
    def test_hub_configs(self):
        """I put require_torch_and_cuda cause I only want this to run with self-scheduled."""

        model_list = HfApi().model_list()
        org = "sshleifer"
        model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)]
        allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"]
        failures = []
        for m in model_ids:
            if m in allowed_to_be_broken:
                continue
            try:
                AutoConfig.from_pretrained(m)
            except Exception:
                failures.append(m)
        assert not failures, f"The following models could not be loaded through AutoConfig: {failures}"

139
    @require_multigpu
140
    def test_multigpu(self):
Lysandre's avatar
Lysandre committed
141
142
143
144
145
146
        updates = dict(
            no_teacher=True,
            freeze_encoder=True,
            gpus=2,
            sortish_sampler=False,
        )
147
148
149
150
151
152
153
154
155
156
        self._test_distiller_cli(updates)

    def test_distill_no_teacher(self):
        updates = dict(student_encoder_layers=2, student_decoder_layers=1, no_teacher=True)
        self._test_distiller_cli(updates)

    def test_distill_checkpointing_with_teacher(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
157
            max_epochs=4,
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            val_check_interval=0.25,
            alpha_hid=2.0,
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
        )
        model = self._test_distiller_cli(updates, check_contents=False)

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        self.assertEqual(len(transformer_ckpts), 2)
        examples = lmap(str.strip, model.hparams.data_dir.joinpath("test.source").open().readlines())
        out_path = tempfile.mktemp()
        generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr"))
        self.assertTrue(Path(out_path).exists())

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

175
    def test_loss_fn(self):
176
        model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"]
        target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device)
        decoder_input_ids = target_ids[:, :-1].contiguous()  # Why this line?
        lm_labels = target_ids[:, 1:].clone()  # why clone?
        model_computed_loss = model(
            input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False
        ).loss

        logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits

        lprobs = torch.nn.functional.log_softmax(logits, dim=-1)
        smoothed_loss, nll_loss = label_smoothed_nll_loss(
            lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id
        )
        with self.assertRaises(AssertionError):
            # TODO: understand why this breaks
            self.assertEqual(nll_loss, model_computed_loss)

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    def test_distill_mbart(self):
        updates = dict(
            student_encoder_layers=2,
            student_decoder_layers=1,
            num_train_epochs=4,
            val_check_interval=0.25,
            alpha_hid=2.0,
            task="translation",
            model_name_or_path="IGNORE_THIS_IT_DOESNT_GET_USED",
            tokenizer_name=MBART_TINY,
            teacher=MBART_TINY,
            src_lang="en_XX",
            tgt_lang="ro_RO",
        )
        model = self._test_distiller_cli(updates, check_contents=False)
210
        assert model.model.config.model_type == "mbart"
211
212
213
214
215
216
217
218
219
220

        ckpts = list(Path(model.output_dir).glob("*.ckpt"))
        self.assertEqual(1, len(ckpts))
        transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin"))
        all_files = list(Path(model.output_dir).glob("best_tfmr/*"))
        assert len(all_files) > 2
        self.assertEqual(len(transformer_ckpts), 2)

        evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))

221
222
223
224
225
226
227
228
229
230
231
232
233
234
    @unittest.skip("T5 distillation is broken at the moment")
    def test_distill_t5(self):
        updates = dict(
            student_encoder_layers=1,
            student_decoder_layers=1,
            alpha_hid=2.0,
            teacher=T5_TINY,
            model_name_or_path=T5_TINY,
            tokenizer_name=T5_TINY,
        )
        self._test_distiller_cli(updates)

    def _test_distiller_cli(self, updates, check_contents=True):
        default_updates = dict(
235
            label_smoothing=0.0,
236
            early_stopping_patience=-1,
237
238
            train_batch_size=1,
            eval_batch_size=2,
239
            max_epochs=2,
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
            alpha_mlm=0.2,
            alpha_ce=0.8,
            do_predict=True,
            model_name_or_path="sshleifer/tinier_bart",
            teacher=CHEAP_ARGS["model_name_or_path"],
            val_check_interval=0.5,
            alpha_encoder_loss=0.4,
        )
        default_updates.update(updates)
        args_d: dict = CHEAP_ARGS.copy()
        tmp_dir = make_test_data_dir()
        output_dir = tempfile.mkdtemp(prefix="output_")

        args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates)
        model = distill_main(argparse.Namespace(**args_d))
        if not check_contents:
            return model
        contents = os.listdir(output_dir)
        ckpt_name = "val_avg_rouge2=0.0000-step_count=2.ckpt"  # "val_avg_rouge2=0.0000-epoch=1.ckpt"  # "epoch=1-val_avg_rouge2=0.0000.ckpt"
        contents = {os.path.basename(p) for p in contents}
        self.assertIn(ckpt_name, contents)

        self.assertIn("test_generations.txt", contents)
        self.assertIn("test_results.txt", contents)

        metrics = load_json(model.metrics_save_path)
        last_step_stats = metrics["val"][-1]
        self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01)
        self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"])
        self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
270
        desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1)
271
272
273
274
275
276
        self.assertEqual(len(metrics["val"]), desired_n_evals)
        self.assertEqual(len(metrics["test"]), 1)
        return model


@pytest.mark.parametrize(["model"], [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY)])
277
def test_run_eval(model):
278
279
    input_file_name = Path(tempfile.mkdtemp()) / "utest_input.source"
    output_file_name = input_file_name.parent / "utest_output.txt"
280
281
    assert not output_file_name.exists()
    articles = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
282
    _dump_articles(input_file_name, articles)
283
284
285
286
287
288
289
290
291
292
293
294
    score_path = str(Path(tempfile.mkdtemp()) / "scores.json")
    task = "translation_en_to_de" if model == T5_TINY else "summarization"
    testargs = [
        "run_eval.py",
        model,
        str(input_file_name),
        str(output_file_name),
        "--score_path",
        score_path,
        "--task",
        task,
    ]
295
296
297
298
299
300
301
    with patch.object(sys, "argv", testargs):
        run_generate()
        assert Path(output_file_name).exists()
        os.remove(Path(output_file_name))


@pytest.mark.parametrize(
Lysandre's avatar
Lysandre committed
302
303
    ["model"],
    [pytest.param(T5_TINY), pytest.param(BART_TINY), pytest.param(MBART_TINY), pytest.param(MARIAN_TINY)],
304
305
306
307
)
def test_finetune(model):
    args_d: dict = CHEAP_ARGS.copy()
    task = "translation" if model in [MBART_TINY, MARIAN_TINY] else "summarization"
308
309
    args_d["label_smoothing"] = 0.1 if task == "translation" else 0

310
311
312
313
314
315
316
317
318
319
320
    tmp_dir = make_test_data_dir()
    output_dir = tempfile.mkdtemp(prefix="output_")
    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        output_dir=output_dir,
        do_predict=True,
        task=task,
321
322
323
324
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
325
326
327
    )
    assert "n_train" in args_d
    args = argparse.Namespace(**args_d)
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
    module = main(args)

    input_embeds = module.model.get_input_embeddings()
    assert not input_embeds.weight.requires_grad
    if model == T5_TINY:
        lm_head = module.model.lm_head
        assert not lm_head.weight.requires_grad
        assert (lm_head.weight == input_embeds.weight).all().item()

    else:
        bart = module.model.model
        embed_pos = bart.decoder.embed_positions
        assert not embed_pos.weight.requires_grad
        assert not bart.shared.weight.requires_grad
        # check that embeds are the same
        assert bart.decoder.embed_tokens == bart.encoder.embed_tokens
        assert bart.decoder.embed_tokens == bart.shared
345
346


347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
def test_finetune_extra_model_args():
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    args_d.update(
        data_dir=tmp_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # test models whose config includes the extra_model_args
    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")
    args_d1 = args_d.copy()
    args_d1.update(
Lysandre's avatar
Lysandre committed
371
372
        model_name_or_path=model,
        output_dir=output_dir,
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    )
    extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout")
    for p in extra_model_params:
        args_d1[p] = 0.5
    args = argparse.Namespace(**args_d1)
    model = main(args)
    for p in extra_model_params:
        assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}"

    # test models whose config doesn't include the extra_model_args
    model = T5_TINY
    output_dir = tempfile.mkdtemp(prefix="output_2_")
    args_d2 = args_d.copy()
    args_d2.update(
Lysandre's avatar
Lysandre committed
387
388
        model_name_or_path=model,
        output_dir=output_dir,
389
390
391
392
393
394
395
396
397
    )
    unsupported_param = "encoder_layerdrop"
    args_d2[unsupported_param] = 0.5
    args = argparse.Namespace(**args_d2)
    with pytest.raises(Exception) as excinfo:
        model = main(args)
    assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute"


398
def test_finetune_lr_schedulers():
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    args_d: dict = CHEAP_ARGS.copy()

    task = "summarization"
    tmp_dir = make_test_data_dir()

    model = BART_TINY
    output_dir = tempfile.mkdtemp(prefix="output_1_")

    args_d.update(
        data_dir=tmp_dir,
        model_name_or_path=model,
        output_dir=output_dir,
        tokenizer_name=None,
        train_batch_size=2,
        eval_batch_size=2,
        do_predict=False,
        task=task,
        src_lang="en_XX",
        tgt_lang="ro_RO",
        freeze_encoder=True,
        freeze_embeds=True,
    )

    # emulate finetune.py
    parser = argparse.ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
    args = {"--help": True}

    # --help test
    with pytest.raises(SystemExit) as excinfo:
430
431
        with CaptureStdout() as cs:
            args = parser.parse_args(args)
432
433
434
        assert False, "--help is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = lightning_base.arg_to_scheduler_metavar
435
    assert expected in cs.out, "--help is expected to list the supported schedulers"
436
437
438
439
440

    # --lr_scheduler=non_existing_scheduler test
    unsupported_param = "non_existing_scheduler"
    args = {f"--lr_scheduler={unsupported_param}"}
    with pytest.raises(SystemExit) as excinfo:
441
442
        with CaptureStderr() as cs:
            args = parser.parse_args(args)
443
444
445
        assert False, "invalid argument is expected to sys.exit"
    assert excinfo.type == SystemExit
    expected = f"invalid choice: '{unsupported_param}'"
446
    assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}"
447
448
449
450
451
452
453
454
455
456

    # --lr_scheduler=existing_scheduler test
    supported_param = "cosine"
    args_d1 = args_d.copy()
    args_d1["lr_scheduler"] = supported_param
    args = argparse.Namespace(**args_d1)
    model = main(args)
    assert getattr(model.hparams, "lr_scheduler") == supported_param, f"lr_scheduler={supported_param} shouldn't fail"


457
458
def test_pack_dataset():
    tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
459

460
    tmp_dir = Path(make_test_data_dir())
461
    orig_examples = tmp_dir.joinpath("train.source").open().readlines()
462
463
464
465
    save_dir = Path(tempfile.mkdtemp(prefix="packed_"))
    pack_data_dir(tokenizer, tmp_dir, 128, save_dir)
    orig_paths = {x.name for x in tmp_dir.iterdir()}
    new_paths = {x.name for x in save_dir.iterdir()}
466
467
468
469
470
471
    packed_examples = save_dir.joinpath("train.source").open().readlines()
    # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
    # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
    assert len(packed_examples) < len(orig_examples)
    assert len(packed_examples) == 1
    assert len(packed_examples[0]) == sum(len(x) for x in orig_examples)
472
473
474
    assert orig_paths == new_paths


475
476
477
478
479
480
481
482
483
484
485
@pytest.mark.parametrize(
    ["tok_name"],
    [
        pytest.param(MBART_TINY),
        pytest.param(MARIAN_TINY),
        pytest.param(T5_TINY),
        pytest.param(BART_TINY),
        pytest.param("google/pegasus-xsum"),
    ],
)
def test_seq2seq_dataset_truncation(tok_name):
486
    tokenizer = AutoTokenizer.from_pretrained(tok_name)
487
488
489
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
490
491
    max_src_len = 4
    max_tgt_len = 8
492
493
494
495
    assert max_len_target > max_src_len  # Will be truncated
    assert max_len_source > max_src_len  # Will be truncated
    src_lang, tgt_lang = "ro_RO", "de_DE"  # ignored for all but mbart, but never causes error.
    train_dataset = Seq2SeqDataset(
496
497
498
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
499
500
        max_source_length=max_src_len,
        max_target_length=max_tgt_len,  # ignored
501
502
503
504
505
506
507
508
        src_lang=src_lang,
        tgt_lang=tgt_lang,
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert isinstance(batch, dict)
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
509
        assert batch["input_ids"].shape[1] == max_src_len
510
        # show that targets are the same len
511
512
        assert batch["labels"].shape[1] == max_tgt_len
        if tok_name != MBART_TINY:
513
            continue
514
        # check language codes in correct place
515
        batch["decoder_input_ids"] = shift_tokens_right(batch["labels"], tokenizer.pad_token_id)
516
517
518
519
520
521
522
523
        assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
        assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
        assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]

        break  # No need to test every batch


524
525
@pytest.mark.parametrize(["tok"], [pytest.param(BART_TINY), pytest.param("bert-base-cased")])
def test_legacy_dataset_truncation(tok):
526
527
528
529
530
    tokenizer = AutoTokenizer.from_pretrained(tok)
    tmp_dir = make_test_data_dir()
    max_len_source = max(len(tokenizer.encode(a)) for a in ARTICLES)
    max_len_target = max(len(tokenizer.encode(a)) for a in SUMMARIES)
    trunc_target = 4
531
    train_dataset = LegacySeq2SeqDataset(
Lysandre's avatar
Lysandre committed
532
533
534
535
536
        tokenizer,
        data_dir=tmp_dir,
        type_path="train",
        max_source_length=20,
        max_target_length=trunc_target,
537
538
539
540
541
542
543
544
    )
    dataloader = DataLoader(train_dataset, batch_size=2, collate_fn=train_dataset.collate_fn)
    for batch in dataloader:
        assert batch["attention_mask"].shape == batch["input_ids"].shape
        # show that articles were trimmed.
        assert batch["input_ids"].shape[1] == max_len_source
        assert 20 >= batch["input_ids"].shape[1]  # trimmed significantly
        # show that targets were truncated
545
        assert batch["labels"].shape[1] == trunc_target  # Truncated
546
        assert max_len_target > trunc_target  # Truncated
547
        break  # No need to test every batch