test_modeling_tf_led.py 23.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import LEDConfig, is_tf_available
Yih-Dar's avatar
Yih-Dar committed
20
from transformers.testing_utils import is_pt_tf_cross_test, require_tf, slow
Patrick von Platen's avatar
Patrick von Platen committed
21
22
23
24
25
26

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
Yih-Dar's avatar
Yih-Dar committed
27
    import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    import tensorflow as tf

    from transformers import TFLEDForConditionalGeneration, TFLEDModel


@require_tf
class TFLEDModelTester:
    config_cls = LEDConfig
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        attention_window=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size

        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.attention_window = attention_window

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window` and one before and one after
82
        self.key_length = self.attention_window + 2
Patrick von Platen's avatar
Patrick von Platen committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            attention_window=self.attention_window,
            **self.config_updates,
        )
        inputs_dict = prepare_led_inputs_dict(config, input_ids, decoder_input_ids)
        global_attention_mask = tf.concat(
            [tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
            axis=-1,
        )
        inputs_dict["global_attention_mask"] = global_attention_mask
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFLEDModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()
        past_key_values = past_key_values[1]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


def prepare_led_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
166
167
    head_mask=None,
    decoder_head_mask=None,
Patrick von Platen's avatar
Patrick von Platen committed
168
169
170
171
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
172
173
174
175
176
177
178
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
179
180
181
182
    if head_mask is None:
        head_mask = tf.ones((config.encoder_layers, config.encoder_attention_heads))
    if decoder_head_mask is None:
        decoder_head_mask = tf.ones((config.decoder_layers, config.decoder_attention_heads))
Patrick von Platen's avatar
Patrick von Platen committed
183
184
185
186
187
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "decoder_input_ids": decoder_input_ids,
        "decoder_attention_mask": decoder_attention_mask,
188
189
        "head_mask": head_mask,
        "decoder_head_mask": decoder_head_mask,
Patrick von Platen's avatar
Patrick von Platen committed
190
191
192
193
194
195
196
197
198
    }


@require_tf
class TFLEDModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
    all_generative_model_classes = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
    is_encoder_decoder = True
    test_pruning = False
199
200
    test_head_masking = False
    test_onnx = False
Patrick von Platen's avatar
Patrick von Platen committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

    def setUp(self):
        self.model_tester = TFLEDModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LEDConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None

    def test_resize_token_embeddings(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def _get_word_embedding_weight(model, embedding_layer):
            if hasattr(embedding_layer, "weight"):
                return embedding_layer.weight
            else:
                # Here we build the word embeddings weights if not exists.
                # And then we retry to get the attribute once built.
                model(model.dummy_inputs)
                if hasattr(embedding_layer, "weight"):
                    return embedding_layer.weight
                else:
                    return None

        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                old_final_logits_bias = model.get_bias()

                # reshape the embeddings
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                new_final_logits_bias = model.get_bias()

                # check that the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size

                self.assertEqual(new_input_embeddings.shape[0], assert_size)

                # check that weights remain the same after resizing
                models_equal = True
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

                if old_final_logits_bias is not None and new_final_logits_bias is not None:
                    old_final_logits_bias = old_final_logits_bias["final_logits_bias"]
                    new_final_logits_bias = new_final_logits_bias["final_logits_bias"]
                    self.assertEqual(new_final_logits_bias.shape[0], 1)
                    self.assertEqual(new_final_logits_bias.shape[1], assert_size)

                    models_equal = True
                    for old, new in zip(old_final_logits_bias.value(), new_final_logits_bias.value()):
                        for p1, p2 in zip(old, new):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                    self.assertTrue(models_equal)
Patrick von Platen's avatar
Patrick von Platen committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        inputs_dict["global_attention_mask"] = tf.zeros_like(inputs_dict["attention_mask"])
        num_global_attn_indices = 2
        inputs_dict["global_attention_mask"] = tf.where(
            tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices,
            1,
            inputs_dict["global_attention_mask"],
        )

        config.return_dict = True
        seq_length = self.model_tester.seq_length
        encoder_seq_length = self.model_tester.encoder_seq_length

        def check_decoder_attentions_output(outputs):
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_length, seq_length],
            )

        def check_encoder_attentions_output(outputs):
            attentions = [t.numpy() for t in outputs.encoder_attentions]
            global_attentions = [t.numpy() for t in outputs.encoder_global_attentions]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertEqual(len(global_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, seq_length],
            )
            self.assertListEqual(
                list(global_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            out_len = len(outputs)
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)

            if self.is_encoder_decoder:
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)

            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
            check_encoder_attentions_output(outputs)

Yih-Dar's avatar
Yih-Dar committed
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    # TODO: Remove this once a more thorough pt/tf equivalence could be implemented in `test_modeling_tf_common.py`.
    # (Currently, such a test will fail some other model tests: it requires some time to fix them.)
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence_extra(self):
        import torch

        import transformers

        def prepare_pt_inputs_from_tf_inputs(tf_inputs_dict):

            pt_inputs_dict = {}
            for name, key in tf_inputs_dict.items():
                if type(key) == bool:
                    pt_inputs_dict[name] = key
                elif name == "input_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
                elif name == "pixel_values":
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32)
                else:
                    pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long)

            return pt_inputs_dict

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            pt_model_class_name = model_class.__name__[2:]  # Skip the "TF" at the beginning
            pt_model_class = getattr(transformers, pt_model_class_name)

            config.output_hidden_states = True

            tf_model = model_class(config)
            pt_model = pt_model_class(config)

            tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            tf_inputs_dict_maybe_with_labels = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

            # Check we can load pt model in tf and vice-versa with model => model functions

            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)

            # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
            pt_model.eval()

            pt_inputs_dict = prepare_pt_inputs_from_tf_inputs(tf_inputs_dict)
            pt_inputs_dict_maybe_with_labels = prepare_pt_inputs_from_tf_inputs(tf_inputs_dict_maybe_with_labels)

            # need to rename encoder-decoder "inputs" for PyTorch
            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs_dict)
            tfo = tf_model(tf_inputs_dict, training=False)

            tf_hidden_states = tfo[0].numpy()
            pt_hidden_states = pto[0].numpy()

            tf_nans = np.isnan(tf_hidden_states)
            pt_nans = np.isnan(pt_hidden_states)

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0

            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
            self.assertLessEqual(max_diff, 1e-4)

            has_labels = any(
                x in tf_inputs_dict_maybe_with_labels for x in ["labels", "next_sentence_label", "start_positions"]
            )
            if has_labels:

                with torch.no_grad():
                    pto = pt_model(**pt_inputs_dict_maybe_with_labels)
                tfo = tf_model(tf_inputs_dict_maybe_with_labels, training=False)

                # Some models' output class don't have `loss` attribute despite `labels` is used.
                tf_loss = getattr(tfo, "loss", None)
                pt_loss = getattr(pto, "loss", None)

                # Some models require extra condition to return loss. For example, `BertForPreTraining` requires both
                # `labels` and `next_sentence_label`.
                # Moreover, some PT models return loss while the corresponding TF/Flax models don't.
                if tf_loss is not None and pt_loss is not None:

                    tf_loss = tf.math.reduce_mean(tf_loss).numpy()
                    pt_loss = pt_loss.numpy()

                    tf_nans = np.isnan(tf_loss)
                    pt_nans = np.isnan(pt_loss)
                    # the 2 losses need to be both nan or both not nan
                    # (`TapasForQuestionAnswering` gives nan loss here)
                    self.assertEqual(tf_nans, pt_nans)

                    if not tf_nans:
                        max_diff = np.amax(np.abs(tf_loss - pt_loss))
                        # `TFFunnelForTokenClassification` (and potentially other TF token classification models) give
                        # large difference (up to 0.1x). PR #15294 addresses this issue.
                        # There is also an inconsistency between PT/TF `XLNetLMHeadModel`.
                        # Before these issues are fixed & merged, set a higher threshold here to pass the test.
                        self.assertLessEqual(max_diff, 1e-4)

                    tf_logits = tfo[1].numpy()
                    pt_logits = pto[1].numpy()

                    # check on the shape
                    self.assertEqual(tf_logits.shape, pt_logits.shape)

                    tf_nans = np.isnan(tf_logits)
                    pt_nans = np.isnan(pt_logits)

                    pt_logits[tf_nans] = 0
                    tf_logits[tf_nans] = 0
                    pt_logits[pt_nans] = 0
                    tf_logits[pt_nans] = 0

                    max_diff = np.amax(np.abs(tf_logits - pt_logits))
                    self.assertLessEqual(max_diff, 1e-4)

Julien Plu's avatar
Julien Plu committed
488
489
    def test_xla_mode(self):
        # TODO JP: Make LED XLA compliant
490
491
        pass

492
493
494
495
    def test_saved_model_creation(self):
        # This test is too long (>30sec) and makes fail the CI
        pass

496
497
498
499
    def test_generate_with_headmasking(self):
        # TODO: Head-masking not yet implement
        pass

Patrick von Platen's avatar
Patrick von Platen committed
500
501
502
503
504
505
506
507
508
509

def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if tf.debugging.assert_near(a, b, atol=atol):
            return True
        raise
    except Exception:
510
511
512
        if len(prefix) > 0:
            prefix = f"{prefix}: "
        raise AssertionError(f"{prefix}{a} != {b}")
Patrick von Platen's avatar
Patrick von Platen committed
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555


def _long_tensor(tok_lst):
    return tf.constant(tok_lst, dtype=tf.int32)


TOLERANCE = 1e-4


@slow
@require_tf
class TFLEDModelIntegrationTest(unittest.TestCase):
    def test_inference_no_head(self):
        model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384").led

        # change to intended input here
        input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
        decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
        inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids)
        output = model(**inputs_dict)[0]
        expected_shape = (1, 1024, 768)
        self.assertEqual(output.shape, expected_shape)
        # change to expected output here
        expected_slice = tf.convert_to_tensor(
            [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]],
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE)

    def test_inference_with_head(self):
        model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")

        # change to intended input here
        input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
        decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
        inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids)
        output = model(**inputs_dict)[0]
        expected_shape = (1, 1024, model.config.vocab_size)
        self.assertEqual(output.shape, expected_shape)
        # change to expected output here
        expected_slice = tf.convert_to_tensor(
            [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]],
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE)