"examples/research_projects/adversarial/utils_hans.py" did not exist on "fd405e9a93f066cf1230ce4d53e2ade73c4a5497"
test_modeling_tf_led.py 19 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# coding=utf-8
# Copyright Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow

from .test_configuration_common import ConfigTester
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor


if is_tf_available():
    import tensorflow as tf

    from transformers import TFLEDForConditionalGeneration, TFLEDModel


@require_tf
class TFLEDModelTester:
    config_cls = LEDConfig
    config_updates = {}
    hidden_act = "gelu"

    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=7,
        is_training=True,
        use_labels=False,
        vocab_size=99,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        max_position_embeddings=20,
        eos_token_id=2,
        pad_token_id=1,
        bos_token_id=0,
        attention_window=4,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.use_labels = use_labels
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size

        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.eos_token_id = eos_token_id
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.attention_window = attention_window

        # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
        # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
        # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
        # because its local attention only attends to `self.attention_window` and one before and one after
        self.key_length = self.attention_window + 1

        # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
        # the `test_attention_outputs` and `test_hidden_states_output` tests
        self.encoder_seq_length = (
            self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
        )

    def prepare_config_and_inputs_for_common(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size)
        eos_tensor = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size), 1)
        input_ids = tf.concat([input_ids, eos_tensor], axis=1)

        decoder_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        config = self.config_cls(
            vocab_size=self.vocab_size,
            d_model=self.hidden_size,
            encoder_layers=self.num_hidden_layers,
            decoder_layers=self.num_hidden_layers,
            encoder_attention_heads=self.num_attention_heads,
            decoder_attention_heads=self.num_attention_heads,
            encoder_ffn_dim=self.intermediate_size,
            decoder_ffn_dim=self.intermediate_size,
            dropout=self.hidden_dropout_prob,
            attention_dropout=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            eos_token_ids=[2],
            bos_token_id=self.bos_token_id,
            pad_token_id=self.pad_token_id,
            decoder_start_token_id=self.pad_token_id,
            attention_window=self.attention_window,
            **self.config_updates,
        )
        inputs_dict = prepare_led_inputs_dict(config, input_ids, decoder_input_ids)
        global_attention_mask = tf.concat(
            [tf.zeros_like(input_ids)[:, :-1], tf.ones_like(input_ids)[:, -1:]],
            axis=-1,
        )
        inputs_dict["global_attention_mask"] = global_attention_mask
        return config, inputs_dict

    def check_decoder_model_past_large_inputs(self, config, inputs_dict):
        model = TFLEDModel(config=config).get_decoder()
        input_ids = inputs_dict["input_ids"]

        input_ids = input_ids[:1, :]
        attention_mask = inputs_dict["attention_mask"][:1, :]
        self.batch_size = 1

        # first forward pass
        outputs = model(input_ids, attention_mask=attention_mask, use_cache=True)

        output, past_key_values = outputs.to_tuple()
        past_key_values = past_key_values[1]

        # create hypothetical next token and extent to next_input_ids
        next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
        next_attn_mask = tf.cast(ids_tensor((self.batch_size, 3), 2), tf.int8)

        # append to next input_ids and
        next_input_ids = tf.concat([input_ids, next_tokens], axis=-1)
        next_attention_mask = tf.concat([attention_mask, next_attn_mask], axis=-1)

        output_from_no_past = model(next_input_ids, attention_mask=next_attention_mask)[0]
        output_from_past = model(next_tokens, attention_mask=next_attention_mask, past_key_values=past_key_values)[0]

        self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1])

        # select random slice
        random_slice_idx = int(ids_tensor((1,), output_from_past.shape[-1]))
        output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx]
        output_from_past_slice = output_from_past[:, :, random_slice_idx]

        # test that outputs are equal for slice
        tf.debugging.assert_near(output_from_past_slice, output_from_no_past_slice, rtol=1e-3)


def prepare_led_inputs_dict(
    config,
    input_ids,
    decoder_input_ids,
    attention_mask=None,
    decoder_attention_mask=None,
):
    if attention_mask is None:
        attention_mask = tf.cast(tf.math.not_equal(input_ids, config.pad_token_id), tf.int8)
    if decoder_attention_mask is None:
169
170
171
172
173
174
175
        decoder_attention_mask = tf.concat(
            [
                tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.int8),
                tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id), tf.int8),
            ],
            axis=-1,
        )
Patrick von Platen's avatar
Patrick von Platen committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    return {
        "input_ids": input_ids,
        "attention_mask": attention_mask,
        "decoder_input_ids": decoder_input_ids,
        "decoder_attention_mask": decoder_attention_mask,
    }


@require_tf
class TFLEDModelTest(TFModelTesterMixin, unittest.TestCase):
    all_model_classes = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
    all_generative_model_classes = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
    is_encoder_decoder = True
    test_pruning = False
190
    test_head_masking = False
Patrick von Platen's avatar
Patrick von Platen committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

    def setUp(self):
        self.model_tester = TFLEDModelTester(self)
        self.config_tester = ConfigTester(self, config_class=LEDConfig)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_decoder_model_past_large_inputs(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs_for_common()
        self.model_tester.check_decoder_model_past_large_inputs(*config_and_inputs)

    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert isinstance(name, dict)
                for k, v in name.items():
                    assert isinstance(v, tf.Variable)
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None

    def test_resize_token_embeddings(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def _get_word_embedding_weight(model, embedding_layer):
            if hasattr(embedding_layer, "weight"):
                return embedding_layer.weight
            else:
                # Here we build the word embeddings weights if not exists.
                # And then we retry to get the attribute once built.
                model(model.dummy_inputs)
                if hasattr(embedding_layer, "weight"):
                    return embedding_layer.weight
                else:
                    return None

        for model_class in self.all_model_classes:
            for size in [config.vocab_size - 10, config.vocab_size + 10, None]:
                # build the embeddings
                model = model_class(config=config)
                old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                old_final_logits_bias = model.get_bias()

                # reshape the embeddings
                model.resize_token_embeddings(size)
                new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings())
                new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings())
                new_final_logits_bias = model.get_bias()

                # check that the resized embeddings size matches the desired size.
                assert_size = size if size is not None else config.vocab_size

                self.assertEqual(new_input_embeddings.shape[0], assert_size)

                # check that weights remain the same after resizing
                models_equal = True
                for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()):
                    if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                        models_equal = False
                self.assertTrue(models_equal)

                if old_output_embeddings is not None and new_output_embeddings is not None:
                    self.assertEqual(new_output_embeddings.shape[0], assert_size)

                    models_equal = True
                    for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()):
                        if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                            models_equal = False
                    self.assertTrue(models_equal)

                if old_final_logits_bias is not None and new_final_logits_bias is not None:
                    old_final_logits_bias = old_final_logits_bias["final_logits_bias"]
                    new_final_logits_bias = new_final_logits_bias["final_logits_bias"]
                    self.assertEqual(new_final_logits_bias.shape[0], 1)
                    self.assertEqual(new_final_logits_bias.shape[1], assert_size)

                    models_equal = True
                    for old, new in zip(old_final_logits_bias.value(), new_final_logits_bias.value()):
                        for p1, p2 in zip(old, new):
                            if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0:
                                models_equal = False
                    self.assertTrue(models_equal)
Patrick von Platen's avatar
Patrick von Platen committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

    def test_attention_outputs(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        inputs_dict["global_attention_mask"] = tf.zeros_like(inputs_dict["attention_mask"])
        num_global_attn_indices = 2
        inputs_dict["global_attention_mask"] = tf.where(
            tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices,
            1,
            inputs_dict["global_attention_mask"],
        )

        config.return_dict = True
        seq_length = self.model_tester.seq_length
        encoder_seq_length = self.model_tester.encoder_seq_length

        def check_decoder_attentions_output(outputs):
            decoder_attentions = outputs.decoder_attentions
            self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(decoder_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, seq_length, seq_length],
            )

        def check_encoder_attentions_output(outputs):
            attentions = [t.numpy() for t in outputs.encoder_attentions]
            global_attentions = [t.numpy() for t in outputs.encoder_global_attentions]
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
            self.assertEqual(len(global_attentions), self.model_tester.num_hidden_layers)
            self.assertListEqual(
                list(attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, seq_length],
            )
            self.assertListEqual(
                list(global_attentions[0].shape[-3:]),
                [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices],
            )

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["use_cache"] = False
            config.output_hidden_states = False
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            out_len = len(outputs)
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)

            if self.is_encoder_decoder:
                model = model_class(config)
                outputs = model(self._prepare_for_class(inputs_dict, model_class))
                self.assertEqual(config.output_hidden_states, False)
                check_decoder_attentions_output(outputs)

            # Check that output attentions can also be changed via the config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))
            self.assertEqual(config.output_hidden_states, False)
            check_encoder_attentions_output(outputs)

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            config.output_hidden_states = True
            model = model_class(config)
            outputs = model(self._prepare_for_class(inputs_dict, model_class))

            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)
            check_encoder_attentions_output(outputs)

356
357
    def test_mixed_precision(self):
        # TODO JP: Make LED float16 compliant
Julien Plu's avatar
Julien Plu committed
358
359
360
361
        pass

    def test_xla_mode(self):
        # TODO JP: Make LED XLA compliant
362
363
        pass

Julien Plu's avatar
Julien Plu committed
364
365
366
367
368
369
370
371
372
373
    def test_saved_model_with_attentions_output(self):
        # This test don't pass because of the error:
        # condition [13,8,4,5], then [13,8,4,5], and else [13,8,4,6] must be broadcastable
        # This occurs line 323 in modeling_tf_led.py because the condition line 255
        # returns a tensor of shape
        # [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 2]
        # if is_global_attn is True and a tensor of shape
        # [batch_size, seq_len, self.num_heads, self.one_sided_attn_window_size * 2 + 1]
        # This is due to the tf.concat call line 703 that adds one dimension
        # Need to check with PVP how to properly fix this
Julien Plu's avatar
Julien Plu committed
374
375
        pass

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
    @slow
    def test_saved_model_with_hidden_states_output(self):
        # Temporarily disable this test in order to find
        # how to better handle it without timing out the CI
        pass

    def test_saved_model_creation(self):
        # This test is too long (>30sec) and makes fail the CI
        pass

    @slow
    def test_saved_model_creation_extended(self):
        # Temporarily disable this test in order to find
        # how to better handle it without timing out the CI
        pass

Patrick von Platen's avatar
Patrick von Platen committed
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

def _assert_tensors_equal(a, b, atol=1e-12, prefix=""):
    """If tensors not close, or a and b arent both tensors, raise a nice Assertion error."""
    if a is None and b is None:
        return True
    try:
        if tf.debugging.assert_near(a, b, atol=atol):
            return True
        raise
    except Exception:
        msg = "{} != {}".format(a, b)
        if prefix:
            msg = prefix + ": " + msg
        raise AssertionError(msg)


def _long_tensor(tok_lst):
    return tf.constant(tok_lst, dtype=tf.int32)


TOLERANCE = 1e-4


@slow
@require_tf
class TFLEDModelIntegrationTest(unittest.TestCase):
    def test_inference_no_head(self):
        model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384").led

        # change to intended input here
        input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
        decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
        inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids)
        output = model(**inputs_dict)[0]
        expected_shape = (1, 1024, 768)
        self.assertEqual(output.shape, expected_shape)
        # change to expected output here
        expected_slice = tf.convert_to_tensor(
            [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]],
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE)

    def test_inference_with_head(self):
        model = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")

        # change to intended input here
        input_ids = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
        decoder_input_ids = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]])
        inputs_dict = prepare_led_inputs_dict(model.config, input_ids, decoder_input_ids)
        output = model(**inputs_dict)[0]
        expected_shape = (1, 1024, model.config.vocab_size)
        self.assertEqual(output.shape, expected_shape)
        # change to expected output here
        expected_slice = tf.convert_to_tensor(
            [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]],
        )
        tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=TOLERANCE)