"examples/pytorch/question-answering/README.md" did not exist on "2c83b3c38d00377c0bb92a7f438758e10417bfd1"
test_pipelines_image_to_text.py 9.59 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

17
18
import requests

19
20
from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
from transformers.pipelines import pipeline
21
22
23
24
25
26
27
from transformers.testing_utils import (
    is_pipeline_test,
    require_tf,
    require_torch,
    require_vision,
    slow,
)
28

29
from .test_pipelines_common import ANY
30
31
32
33
34
35
36
37
38
39
40
41


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


42
@is_pipeline_test
43
@require_vision
44
class ImageToTextPipelineTests(unittest.TestCase):
45
46
47
    model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
    tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING

48
    def get_test_pipeline(self, model, tokenizer, processor):
Yih-Dar's avatar
Yih-Dar committed
49
        pipe = pipeline("image-to-text", model=model, tokenizer=tokenizer, image_processor=processor)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        examples = [
            Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]
        return pipe, examples

    def run_pipeline_test(self, pipe, examples):
        outputs = pipe(examples)
        self.assertEqual(
            outputs,
            [
                [{"generated_text": ANY(str)}],
                [{"generated_text": ANY(str)}],
            ],
        )

    @require_tf
    def test_small_model_tf(self):
68
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", framework="tf")
69
70
71
72
73
74
75
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(
            outputs,
            [
                {
76
                    "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
77
78
79
80
81
82
83
84
85
86
                },
            ],
        )

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [
                    {
87
88
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
89
90
91
                ],
                [
                    {
92
93
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
94
95
96
97
                ],
            ],
        )

98
99
100
101
102
103
        outputs = pipe(image, max_new_tokens=1)
        self.assertEqual(
            outputs,
            [{"generated_text": "growth"}],
        )

104
105
    @require_torch
    def test_small_model_pt(self):
106
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                },
            ],
        )

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [
                    {
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
                ],
                [
                    {
                        "generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
                    }
                ],
            ],
        )

136
137
138
139
140
141
142
143
144
    @require_torch
    def test_small_model_pt_conditional(self):
        pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
        prompt = "a photo of"

        outputs = pipe(image, prompt=prompt)
        self.assertTrue(outputs[0]["generated_text"].startswith(prompt))

145
146
147
    @slow
    @require_torch
    def test_large_model_pt(self):
148
        pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
            ],
        )

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    @slow
    @require_torch
    def test_generation_pt_blip(self):
        pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
        url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
        image = Image.open(requests.get(url, stream=True).raw)

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a pink pokemon pokemon with a blue shirt and a blue shirt"}])

    @slow
    @require_torch
    def test_generation_pt_git(self):
        pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
        url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
        image = Image.open(requests.get(url, stream=True).raw)

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cartoon of a purple character."}])

    @slow
    @require_torch
    def test_conditional_generation_pt_blip(self):
        pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "a photography of"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "a photography of a volcano"}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

    @slow
    @require_torch
    def test_conditional_generation_pt_git(self):
        pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "a photo of a"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "a photo of a tent with a tent and a tent in the background."}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

    @slow
    @require_torch
    def test_conditional_generation_pt_pix2struct(self):
        pipe = pipeline("image-to-text", model="google/pix2struct-ai2d-base")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"

        outputs = pipe(image, prompt=prompt)
        self.assertEqual(outputs, [{"generated_text": "ash cloud"}])

        with self.assertRaises(ValueError):
            outputs = pipe([image, image], prompt=[prompt, prompt])

228
229
230
    @slow
    @require_tf
    def test_large_model_tf(self):
231
        pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en", framework="tf")
232
233
234
235
236
237
238
239
240
241
242
243
244
        image = "./tests/fixtures/tests_samples/COCO/000000039769.png"

        outputs = pipe(image)
        self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])

        outputs = pipe([image, image])
        self.assertEqual(
            outputs,
            [
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
                [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
            ],
        )
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265

    @slow
    @require_torch
    def test_conditional_generation_llava(self):
        pipe = pipeline("image-to-text", model="llava-hf/bakLlava-v1-hf")
        url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
        image = Image.open(requests.get(url, stream=True).raw)

        prompt = (
            "<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT:"
        )

        outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
        self.assertEqual(
            outputs,
            [
                {
                    "generated_text": "<image> \nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT: Lava"
                }
            ],
        )