test_modeling_dpt.py 13.8 KB
Newer Older
NielsRogge's avatar
NielsRogge committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DPT model. """


import unittest

from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device

Yih-Dar's avatar
Yih-Dar committed
25
from ...test_configuration_common import ConfigTester
26
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
27
from ...test_pipeline_mixin import PipelineTesterMixin
NielsRogge's avatar
NielsRogge committed
28
29
30
31
32
33
34
35
36
37
38
39
40


if is_torch_available():
    import torch
    from torch import nn

    from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
    from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST


if is_vision_available():
    from PIL import Image

41
    from transformers import DPTImageProcessor
NielsRogge's avatar
NielsRogge committed
42
43
44
45
46
47
48
49
50
51
52
53
54


class DPTModelTester:
    def __init__(
        self,
        parent,
        batch_size=2,
        image_size=32,
        patch_size=16,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
55
        num_hidden_layers=2,
NielsRogge's avatar
NielsRogge committed
56
57
58
59
60
61
62
63
        backbone_out_indices=[0, 1, 2, 3],
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        initializer_range=0.02,
        num_labels=3,
64
        neck_hidden_sizes=[16, 32],
65
        is_hybrid=False,
NielsRogge's avatar
NielsRogge committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.backbone_out_indices = backbone_out_indices
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.initializer_range = initializer_range
        self.num_labels = num_labels
        self.scope = scope
86
        self.is_hybrid = is_hybrid
87
        self.neck_hidden_sizes = neck_hidden_sizes
NielsRogge's avatar
NielsRogge committed
88
        # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
89
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
90
        self.seq_length = num_patches + 1
NielsRogge's avatar
NielsRogge committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return DPTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
109
            fusion_hidden_size=self.hidden_size,
NielsRogge's avatar
NielsRogge committed
110
111
112
113
114
115
116
117
118
            num_hidden_layers=self.num_hidden_layers,
            backbone_out_indices=self.backbone_out_indices,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
119
            is_hybrid=self.is_hybrid,
120
            neck_hidden_sizes=self.neck_hidden_sizes,
NielsRogge's avatar
NielsRogge committed
121
122
123
124
125
126
127
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = DPTModel(config=config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
NielsRogge's avatar
NielsRogge committed
128
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
NielsRogge's avatar
NielsRogge committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = DPTForDepthEstimation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values)
        self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))

    def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels):
        config.num_labels = self.num_labels
        model = DPTForSemanticSegmentation(config)
        model.to(torch_device)
        model.eval()
        result = model(pixel_values, labels=labels)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size)
        )

    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_torch
156
class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
NielsRogge's avatar
NielsRogge committed
157
158
159
160
161
162
    """
    Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
163
164
165
166
167
168
169
170
171
    pipeline_model_mapping = (
        {
            "depth-estimation": DPTForDepthEstimation,
            "feature-extraction": DPTModel,
            "image-segmentation": DPTForSemanticSegmentation,
        }
        if is_torch_available()
        else {}
    )
NielsRogge's avatar
NielsRogge committed
172
173
174
175
176
177
178
179
180
181
182
183

    test_pruning = False
    test_resize_embeddings = False
    test_head_masking = False

    def setUp(self):
        self.model_tester = DPTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
184
    @unittest.skip(reason="DPT does not use inputs_embeds")
NielsRogge's avatar
NielsRogge committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
    def test_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, nn.Linear))

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_depth_estimation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)

    def test_for_semantic_segmentation(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)

    def test_training(self):
        for model_class in self.all_model_classes:
            if model_class.__name__ == "DPTForDepthEstimation":
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

            if model_class in get_values(MODEL_MAPPING):
                continue

            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        for model_class in self.all_model_classes:
            if model_class.__name__ == "DPTForDepthEstimation":
                continue

            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
                continue
            model = model_class(config)
            model.to(torch_device)
            model.gradient_checkpointing_enable()
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

246
247
248
249
250
251
252
253
254
255
256
257
    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant(self):
        pass

    @unittest.skip(
        reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
    )
    def test_training_gradient_checkpointing_use_reentrant_false(self):
        pass

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            # Skip the check for the backbone
            backbone_params = []
            for name, module in model.named_modules():
                if module.__class__.__name__ == "DPTViTHybridEmbeddings":
                    backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()]
                    break

            for name, param in model.named_parameters():
                if param.requires_grad:
                    if name in backbone_params:
                        continue
                    self.assertIn(
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
                        [0.0, 1.0],
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
                    )

NielsRogge's avatar
NielsRogge committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    @slow
    def test_model_from_pretrained(self):
        for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
            model = DPTModel.from_pretrained(model_name)
            self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


@require_torch
@require_vision
@slow
class DPTModelIntegrationTest(unittest.TestCase):
    def test_inference_depth_estimation(self):
299
        image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
NielsRogge's avatar
NielsRogge committed
300
301
302
        model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(torch_device)

        image = prepare_img()
303
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)
            predicted_depth = outputs.predicted_depth

        # verify the predicted depth
        expected_shape = torch.Size((1, 384, 384))
        self.assertEqual(predicted_depth.shape, expected_shape)

        expected_slice = torch.tensor(
            [[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))

    def test_inference_semantic_segmentation(self):
321
        image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large-ade")
NielsRogge's avatar
NielsRogge committed
322
323
324
        model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device)

        image = prepare_img()
325
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
NielsRogge's avatar
NielsRogge committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        expected_shape = torch.Size((1, 150, 480, 480))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]]
        ).to(torch_device)

        self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4))
340
341

    def test_post_processing_semantic_segmentation(self):
342
        image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-large-ade")
343
344
345
        model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade").to(torch_device)

        image = prepare_img()
346
        inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
347
348
349
350
351
352
353

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        outputs.logits = outputs.logits.detach().cpu()

354
        segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs, target_sizes=[(500, 300)])
355
356
357
        expected_shape = torch.Size((500, 300))
        self.assertEqual(segmentation[0].shape, expected_shape)

358
        segmentation = image_processor.post_process_semantic_segmentation(outputs=outputs)
359
360
        expected_shape = torch.Size((480, 480))
        self.assertEqual(segmentation[0].shape, expected_shape)