tokenization_roberta.py 8.13 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
15
"""Tokenization classes for RoBERTa."""
16
17
18
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

19
import sys
20
21
import json
import logging
22
import os
23
24
import regex as re
from io import open
25

26
from .tokenization_gpt2 import bytes_to_unicode, get_pairs
27
from .tokenization_utils import PreTrainedTokenizer
28
29
30
31
32
33
34
35

try:
    from functools import lru_cache
except ImportError:
    # Just a dummy decorator to get the checks to run on python2
    # because honestly I don't want to support a byte-level unicode BPE tokenizer on python 2 right now.
    def lru_cache():
        return lambda func: func
36
37
38

logger = logging.getLogger(__name__)

39
40
41
VOCAB_FILES_NAMES = {
    'vocab_file': 'vocab.json',
    'merges_file': 'merges.txt',
42
43
}

44
45
46
47
48
49
50
51
52
53
54
55
56
PRETRAINED_VOCAB_FILES_MAP = {
    'vocab_file':
    {
        'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-vocab.json",
        'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-vocab.json",
        'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-vocab.json",
    },
    'merges_file':
    {
        'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-merges.txt",
        'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-merges.txt",
        'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-merges.txt",
    },
57
58
59
}

PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
60
61
62
    'roberta-base': 512,
    'roberta-large': 512,
    'roberta-large-mnli': 512,
63
64
65
66
67
}


class RobertaTokenizer(PreTrainedTokenizer):
    """
LysandreJik's avatar
Doc  
LysandreJik committed
68
    RoBERTa BPE tokenizer, derived from the GPT-2 tokenizer. Peculiarities: Byte-level BPE
69
    """
70
71
    vocab_files_names = VOCAB_FILES_NAMES
    pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
72
73
    max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES

74
    def __init__(self, vocab_file, merges_file, errors='replace', bos_token="<s>", eos_token="</s>", sep_token="</s>",
75
                 cls_token="<s>", unk_token="<unk>", pad_token='<pad>', mask_token='<mask>', **kwargs):
76
        super(RobertaTokenizer, self).__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token,
77
78
                                               sep_token=sep_token, cls_token=cls_token, pad_token=pad_token,
                                               mask_token=mask_token, **kwargs)
79

80
81
82
83
84
85
86
87
88
89
90
91
        self.encoder = json.load(open(vocab_file, encoding="utf-8"))
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.errors = errors  # how to handle errors in decoding
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
        bpe_data = open(merges_file, encoding='utf-8').read().split('\n')[1:-1]
        bpe_merges = [tuple(merge.split()) for merge in bpe_data]
        self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
        self.cache = {}

        # Should haved added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
        self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
92
93
94

    @property
    def vocab_size(self):
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        return len(self.encoder)

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token)
        pairs = get_pairs(word)

        if not pairs:
            return token

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word
137
138

    def _tokenize(self, text):
139
140
141
142
143
144
145
146
147
        """ Tokenize a string. """
        bpe_tokens = []
        for token in re.findall(self.pat, text):
            if sys.version_info[0] == 2:
                token = ''.join(self.byte_encoder[ord(b)] for b in token)
            else:
                token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens
148
149

    def _convert_token_to_id(self, token):
150
151
        """ Converts a token (str/unicode) in an id using the vocab. """
        return self.encoder.get(token, self.encoder.get(self.unk_token))
152
153

    def _convert_id_to_token(self, index):
154
155
        """Converts an index (integer) in a token (string/unicode) using the vocab."""
        return self.decoder.get(index)
156
157

    def convert_tokens_to_string(self, tokens):
158
159
160
161
        """ Converts a sequence of tokens (string) in a single string. """
        text = ''.join(tokens)
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors=self.errors)
        return text
162

163
    def add_special_tokens_single_sentence(self, token_ids):
164
165
166
167
        """
        Adds special tokens to a sequence for sequence classification tasks.
        A RoBERTa sequence has the following format: [CLS] X [SEP]
        """
168
        return [self._convert_token_to_id(self.cls_token)] + token_ids + [self._convert_token_to_id(self.sep_token)]
169

170
171
172
173
174
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
        """
        Adds special tokens to a sequence pair for sequence classification tasks.
        A RoBERTa sequence pair has the following format: [CLS] A [SEP][SEP] B [SEP]
        """
175
176
        sep = [self._convert_token_to_id(self.sep_token)]
        cls = [self._convert_token_to_id(self.cls_token)]
177
        return cls + token_ids_0 + sep + sep + token_ids_1 + sep
178

179
180
181
182
183
    def save_vocabulary(self, save_directory):
        """Save the tokenizer vocabulary and merge files to a directory."""
        if not os.path.isdir(save_directory):
            logger.error("Vocabulary path ({}) should be a directory".format(save_directory))
            return
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
        vocab_file = os.path.join(save_directory, VOCAB_FILES_NAMES['vocab_file'])
        merge_file = os.path.join(save_directory, VOCAB_FILES_NAMES['merges_file'])

        with open(vocab_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.encoder, ensure_ascii=False))

        index = 0
        with open(merge_file, "w", encoding="utf-8") as writer:
            writer.write(u'#version: 0.2\n')
            for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
                if index != token_index:
                    logger.warning("Saving vocabulary to {}: BPE merge indices are not consecutive."
                                   " Please check that the tokenizer is not corrupted!".format(merge_file))
                    index = token_index
                writer.write(' '.join(bpe_tokens) + u'\n')
                index += 1

        return vocab_file, merge_file