test_modeling_wav2vec2.py 81.7 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Wav2Vec2 model. """

Yih-Dar's avatar
Yih-Dar committed
17
import gc
Patrick von Platen's avatar
Patrick von Platen committed
18
import math
19
import multiprocessing
20
21
22
import os
import pickle
import tempfile
23
import traceback
Patrick von Platen's avatar
Patrick von Platen committed
24
25
import unittest

26
import numpy as np
27
from datasets import load_dataset
28

29
from transformers import Wav2Vec2Config, is_torch_available
30
from transformers.testing_utils import (
31
    CaptureLogger,
32
    is_pt_flax_cross_test,
33
34
35
    is_pyctcdecode_available,
    is_torchaudio_available,
    require_pyctcdecode,
36
37
    require_soundfile,
    require_torch,
38
    require_torchaudio,
39
    run_test_in_subprocess,
40
41
42
    slow,
    torch_device,
)
43
from transformers.utils import is_torch_fx_available
Patrick von Platen's avatar
Patrick von Platen committed
44

Yih-Dar's avatar
Yih-Dar committed
45
46
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
47
48
49
50
51
52
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
53
from ...test_pipeline_mixin import PipelineTesterMixin
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
57


if is_torch_available():
    import torch
58
    from safetensors.torch import save_file as safe_save_file
Patrick von Platen's avatar
Patrick von Platen committed
59

Anton Lozhkov's avatar
Anton Lozhkov committed
60
61
    from transformers import (
        Wav2Vec2FeatureExtractor,
62
        Wav2Vec2ForAudioFrameClassification,
Anton Lozhkov's avatar
Anton Lozhkov committed
63
64
65
        Wav2Vec2ForCTC,
        Wav2Vec2ForMaskedLM,
        Wav2Vec2ForPreTraining,
66
        Wav2Vec2ForSequenceClassification,
67
        Wav2Vec2ForXVector,
Anton Lozhkov's avatar
Anton Lozhkov committed
68
69
70
        Wav2Vec2Model,
        Wav2Vec2Processor,
    )
71
    from transformers.models.wav2vec2.modeling_wav2vec2 import (
72
73
        WAV2VEC2_ADAPTER_PT_FILE,
        WAV2VEC2_ADAPTER_SAFE_FILE,
74
75
76
77
        Wav2Vec2GumbelVectorQuantizer,
        _compute_mask_indices,
        _sample_negative_indices,
    )
Patrick von Platen's avatar
Patrick von Platen committed
78
79


80
81
82
83
84
if is_torchaudio_available():
    import torchaudio


if is_pyctcdecode_available():
85
    import pyctcdecode.decoder
86

87
    from transformers import Wav2Vec2ProcessorWithLM
88
    from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
89
90


91
92
93
94
if is_torch_fx_available():
    from transformers.utils.fx import symbolic_trace


95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = torchaudio.functional.resample(
            torch.tensor(sample["audio"]["array"]), 48_000, 16_000
        ).numpy()

        model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
            torch_device
        )
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values.to(torch_device)).logits

        # use a spawn pool, which should trigger a warning if different than fork
        with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
            transcription = processor.batch_decode(logits.cpu().numpy(), pool).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

        # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
        multiprocessing.set_start_method("spawn", force=True)
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
            transcription = processor.batch_decode(logits.cpu().numpy()).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


Patrick von Platen's avatar
Patrick von Platen committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
class Wav2Vec2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
156
        num_hidden_layers=2,
Patrick von Platen's avatar
Patrick von Platen committed
157
158
159
160
161
162
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
163
164
        mask_time_prob=0.5,
        mask_time_length=2,
Patrick von Platen's avatar
Patrick von Platen committed
165
166
        vocab_size=32,
        do_stable_layer_norm=False,
167
168
        num_adapter_layers=1,
        adapter_stride=2,
169
170
171
172
        tdnn_dim=(32, 32),
        tdnn_kernel=(5, 3),
        tdnn_dilation=(1, 2),
        xvector_output_dim=32,
Patrick von Platen's avatar
Patrick von Platen committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
198
199
        self.num_adapter_layers = num_adapter_layers
        self.adapter_stride = adapter_stride
200
201
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
Patrick von Platen's avatar
Patrick von Platen committed
202
        self.scope = scope
203
204
205
206
        self.tdnn_dim = tdnn_dim
        self.tdnn_kernel = tdnn_kernel
        self.tdnn_dilation = tdnn_dilation
        self.xvector_output_dim = xvector_output_dim
Patrick von Platen's avatar
Patrick von Platen committed
207
208
209
210
211
212
213

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

214
215
        self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1

Patrick von Platen's avatar
Patrick von Platen committed
216
    def prepare_config_and_inputs(self):
217
        input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
218
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
219

220
221
222
223
224
225
        config = self.get_config()

        return config, input_values, attention_mask

    def get_config(self):
        return Wav2Vec2Config(
Patrick von Platen's avatar
Patrick von Platen committed
226
227
228
229
230
231
232
233
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
234
235
            mask_time_prob=self.mask_time_prob,
            mask_time_length=self.mask_time_length,
Patrick von Platen's avatar
Patrick von Platen committed
236
237
238
239
240
241
242
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
243
            do_stable_layer_norm=self.do_stable_layer_norm,
Patrick von Platen's avatar
Patrick von Platen committed
244
245
246
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
247
248
            num_adapter_layers=self.num_adapter_layers,
            adapter_stride=self.adapter_stride,
249
250
251
252
            tdnn_dim=self.tdnn_dim,
            tdnn_kernel=self.tdnn_kernel,
            tdnn_dilation=self.tdnn_dilation,
            xvector_output_dim=self.xvector_output_dim,
Patrick von Platen's avatar
Patrick von Platen committed
253
254
        )

255
    def create_and_check_model(self, config, input_values, attention_mask):
Patrick von Platen's avatar
Patrick von Platen committed
256
257
258
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
259
        result = model(input_values, attention_mask=attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

264
265
266
267
268
269
270
271
272
273
    def create_and_check_model_with_adapter(self, config, input_values, attention_mask):
        config.add_adapter = True
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
        )

274
275
276
277
278
279
280
281
282
283
284
    def create_and_check_model_with_adapter_for_ctc(self, config, input_values, attention_mask):
        config.add_adapter = True
        config.output_hidden_size = 2 * config.hidden_size
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size)
        )

285
286
287
288
289
290
291
292
293
294
295
296
    def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask):
        config.add_adapter = True
        config.output_hidden_size = 8
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
        )

297
298
299
300
    def create_and_check_model_with_attn_adapter(self, config, input_values, attention_mask):
        config.adapter_attn_dim = 16
        model = Wav2Vec2ForCTC(config=config)

301
        self.parent.assertIsNotNone(model._get_adapters())
302
303
304
305
306
307

        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.output_seq_length, self.vocab_size))

308
    def create_and_check_batch_inference(self, config, input_values, *args):
309
        # test does not pass for models making use of `group_norm`
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

334
335
336
337
338
339
340
341
    def check_ctc_loss(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
342
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
343
344
345
346
347
348
349
350

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
351
            attention_mask[i, input_lengths[i] :] = 0
352
353

        model.config.ctc_loss_reduction = "sum"
354
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
355
356

        model.config.ctc_loss_reduction = "mean"
357
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
358

359
360
        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    def check_seq_classifier_loss(self, config, input_values, *args):
        model = Wav2Vec2ForSequenceClassification(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
        unmasked_loss = model(input_values, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(masked_loss, float))
        self.parent.assertTrue(isinstance(unmasked_loss, float))
        self.parent.assertTrue(masked_loss != unmasked_loss)

    def check_ctc_training(self, config, input_values, *args):
388
389
390
391
392
393
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
394
        model.freeze_feature_encoder()
395
396
397
398
399
400
401
402
403
404
405
406

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
Susnato Dhar's avatar
Susnato Dhar committed
407
408
                # it's important that we make sure that target lengths are at least
                # one shorter than logit lengths to prevent -inf
409
410
411
412
413
414
415
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    def check_seq_classifier_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForSequenceClassification(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
    def check_xvector_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForXVector(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

462
463
464
465
466
467
468
469
470
471
472
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

473
        with self.parent.assertRaises(ValueError):
474
475
            model(input_values, labels=labels)

Patrick von Platen's avatar
Patrick von Platen committed
476
    def prepare_config_and_inputs_for_common(self):
477
478
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
Patrick von Platen's avatar
Patrick von Platen committed
479
480
481
482
        return config, inputs_dict


@require_torch
483
class Wav2Vec2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
484
    all_model_classes = (
485
486
487
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForSequenceClassification, Wav2Vec2ForPreTraining)
        if is_torch_available()
        else ()
Patrick von Platen's avatar
Patrick von Platen committed
488
    )
489
490
491
492
493
494
495
496
497
498
    pipeline_model_mapping = (
        {
            "audio-classification": Wav2Vec2ForSequenceClassification,
            "automatic-speech-recognition": Wav2Vec2ForCTC,
            "feature-extraction": Wav2Vec2Model,
            "fill-mask": Wav2Vec2ForMaskedLM,
        }
        if is_torch_available()
        else {}
    )
499
    fx_compatible = True
Patrick von Platen's avatar
Patrick von Platen committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    test_pruning = False
    test_headmasking = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

514
515
516
517
    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

518
519
520
521
    def test_model_with_adapter_for_ctc(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_for_ctc(*config_and_inputs)

522
523
524
525
    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)

526
527
528
529
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

530
    def test_seq_classifier_loss_inference(self):
531
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
532
533
534
535
536
537
538
539
540
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
541

542
543
544
545
    def test_xvector_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_xvector_training(*config_and_inputs)

546
547
548
549
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

569
570
571
572
573
574
575
576
577
578
    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_flax_to_pt(self):
        pass

    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_pt_to_flax(self):
        pass

579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
619
620
621
622
623
624
625
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
626
627
                uniform_init_parms = [
                    "conv.weight",
628
                    "conv.parametrizations.weight",
Anton Lozhkov's avatar
Anton Lozhkov committed
629
630
631
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
632
633
634
635
636
637
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
638
                    "objective.weight",
Anton Lozhkov's avatar
Anton Lozhkov committed
639
                ]
Patrick von Platen's avatar
Patrick von Platen committed
640
                if param.requires_grad:
641
                    if any(x in name for x in uniform_init_parms):
Patrick von Platen's avatar
Patrick von Platen committed
642
643
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
644
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
645
646
647
648
649
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
650
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
651
652
                        )

653
654
655
656
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
657
        if hasattr(module, "weight_g") and module.weight_g is not None:
658
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
659
660
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
661
662
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
663
664
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
665
666
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
667

668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
    def test_mask_feature_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

714
715
716
717
    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
718
719
720
721
722
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)

723
724
    # Wav2Vec2 cannot be torchscripted because of group norm.
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
725
726
727
        # TODO: fix it
        self.skipTest("torch 2.1 breaks torch fx tests for wav2vec2/hubert.")

728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
        if not is_torch_fx_available() or not self.fx_compatible:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
                ]

                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                input_names = list(filtered_inputs.keys())

                model_output = model(**filtered_inputs)

                if (
                    isinstance(model, Wav2Vec2ForSequenceClassification)
                    and not hasattr(model.config, "problem_type")
                    or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"

                traced_model = symbolic_trace(model, input_names)
                traced_output = traced_model(**filtered_inputs)

            except Exception as e:
                self.fail(f"Couldn't trace module: {e}")

            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
            num_outputs = len(model_output)

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )

            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
826
827
828

@require_torch
class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
Anton Lozhkov's avatar
Anton Lozhkov committed
829
    all_model_classes = (
830
831
832
833
834
835
836
837
838
        (
            Wav2Vec2ForCTC,
            Wav2Vec2Model,
            Wav2Vec2ForMaskedLM,
            Wav2Vec2ForSequenceClassification,
            Wav2Vec2ForPreTraining,
            Wav2Vec2ForAudioFrameClassification,
            Wav2Vec2ForXVector,
        )
839
840
        if is_torch_available()
        else ()
Anton Lozhkov's avatar
Anton Lozhkov committed
841
    )
Patrick von Platen's avatar
Patrick von Platen committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
    test_pruning = False
    test_headmasking = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(
            self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
        )
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)
857
858
859
860
861
862
863
864

    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
865

866
867
868
869
    def test_model_with_attn_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_attn_adapter(*config_and_inputs)

870
871
872
873
    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

874
875
876
877
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

878
879
880
881
882
    def test_seq_classifier_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
883
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
884
885
886
887
888
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
889

890
891
892
893
    def test_xvector_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_xvector_training(*config_and_inputs)

894
895
896
897
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
957
958
959
960
961
962
963
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
964
965
                uniform_init_parms = [
                    "conv.weight",
966
                    "conv.parametrizations.weight",
Anton Lozhkov's avatar
Anton Lozhkov committed
967
968
969
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
970
971
972
973
974
975
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
976
                    "objective.weight",
Anton Lozhkov's avatar
Anton Lozhkov committed
977
                ]
Patrick von Platen's avatar
Patrick von Platen committed
978
                if param.requires_grad:
979
                    if any(x in name for x in uniform_init_parms):
Patrick von Platen's avatar
Patrick von Platen committed
980
981
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
982
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
983
984
985
986
987
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
988
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
989
990
                        )

991
992
993
994
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
995
        if hasattr(module, "weight_g") and module.weight_g is not None:
996
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
997
998
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
999
1000
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1001
1002
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
1003
1004
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1005
1006
1007
1008
1009

    def test_model_for_pretraining(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = Wav2Vec2ForPreTraining(config).to(torch_device)

1010
1011
1012
1013
        batch_size = inputs_dict["input_values"].shape[0]
        feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))

        features_shape = (batch_size, feature_seq_length)
Anton Lozhkov's avatar
Anton Lozhkov committed
1014
1015
1016
1017
1018
1019

        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1020
1021
1022
1023
1024
        )
        sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices)

        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1025
1026
1027
1028
1029

        loss = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
1030
            sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
1031
1032
        ).loss

1033
        # more losses
Anton Lozhkov's avatar
Anton Lozhkov committed
1034
        mask_time_indices[:, : mask_time_indices.shape[-1] // 2] = True
1035
1036
1037

        sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices.cpu().numpy())
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1038
1039
1040
1041
        loss_more_masked = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
1042
            sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
1043
1044
1045
1046
        ).loss

        # loss_more_masked has to be bigger or equal loss since more masked inputs have to be predicted
        self.assertTrue(loss.detach().item() <= loss_more_masked.detach().item())
1047

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    def test_mask_feature_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
    def test_mask_time_feature_prob_ctc_single_batch(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2",
            mask_time_prob=0.2,
            mask_feature_prob=0.2,
            mask_time_length=2,
            mask_feature_length=2,
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (1, 1498, 32))

1121
1122
1123
1124
    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
    def test_load_and_set_attn_adapter(self):
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        def get_logits(model, input_features):
            model = model.to(torch_device)
            batch = processor(
                input_features,
                padding=True,
                sampling_rate=processor.feature_extractor.sampling_rate,
                return_tensors="pt",
            )

            with torch.no_grad():
                logits = model(
                    input_values=batch["input_values"].to(torch_device),
                    attention_mask=batch["attention_mask"].to(torch_device),
                ).logits
            return logits

        input_features = [np.random.random(16_000 * s) for s in [1, 3, 2, 6]]

        model = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2-adapter", target_lang="it")

        logits = get_logits(model, input_features)

        model_2 = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2-adapter")
        model_2.load_adapter("it")

        logits_2 = get_logits(model_2, input_features)

        self.assertTrue(torch.allclose(logits, logits_2, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
    # test that loading adapter weights with mismatched vocab sizes can be loaded
    def test_load_target_lang_with_mismatched_size(self):
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        def get_logits(model, input_features):
            model = model.to(torch_device)
            batch = processor(
                input_features,
                padding=True,
                sampling_rate=processor.feature_extractor.sampling_rate,
                return_tensors="pt",
            )

            with torch.no_grad():
                logits = model(
                    input_values=batch["input_values"].to(torch_device),
                    attention_mask=batch["attention_mask"].to(torch_device),
                ).logits
            return logits

        input_features = [np.random.random(16_000 * s) for s in [1, 3, 2, 6]]

        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2-adapter", target_lang="fr", ignore_mismatched_sizes=True
        )

        logits = get_logits(model, input_features)

        model_2 = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2-adapter")
        model_2.load_adapter("fr")

        logits_2 = get_logits(model_2, input_features)

        self.assertTrue(torch.allclose(logits, logits_2, atol=1e-3))

1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
    def test_load_attn_adapter(self):
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        def get_logits(model, input_features):
            model = model.to(torch_device)
            batch = processor(
                input_features,
                padding=True,
                sampling_rate=processor.feature_extractor.sampling_rate,
                return_tensors="pt",
            )

            with torch.no_grad():
                logits = model(
                    input_values=batch["input_values"].to(torch_device),
                    attention_mask=batch["attention_mask"].to(torch_device),
                ).logits
            return logits

        input_features = [np.random.random(16_000 * s) for s in [1, 3, 2, 6]]

        model = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2", adapter_attn_dim=16)

        with tempfile.TemporaryDirectory() as tempdir:
            model.save_pretrained(tempdir)
            model = Wav2Vec2ForCTC.from_pretrained(tempdir)

            logits = get_logits(model, input_features)
1226
            adapter_weights = model._get_adapters()
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247

            # save safe weights
            safe_filepath = os.path.join(tempdir, WAV2VEC2_ADAPTER_SAFE_FILE.format("eng"))
            safe_save_file(adapter_weights, safe_filepath, metadata={"format": "pt"})

            model.load_adapter("eng")
            model.load_adapter("eng", use_safetensors=True)

            with self.assertRaises(OSError):
                model.load_adapter("eng", use_safetensors=False)
            with self.assertRaises(Exception):
                model.load_adapter("ita", use_safetensors=True)
            logits_2 = get_logits(model, input_features)

            self.assertTrue(torch.allclose(logits, logits_2, atol=1e-3))

        with tempfile.TemporaryDirectory() as tempdir:
            model.save_pretrained(tempdir)
            model = Wav2Vec2ForCTC.from_pretrained(tempdir)

            logits = get_logits(model, input_features)
1248
            adapter_weights = model._get_adapters()
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

            # save pt weights
            pt_filepath = os.path.join(tempdir, WAV2VEC2_ADAPTER_PT_FILE.format("eng"))
            torch.save(adapter_weights, pt_filepath)

            model.load_adapter("eng")
            model.load_adapter("eng", use_safetensors=False)

            with self.assertRaises(OSError):
                model.load_adapter("eng", use_safetensors=True)

            logits_2 = get_logits(model, input_features)

            self.assertTrue(torch.allclose(logits, logits_2, atol=1e-3))

        model = Wav2Vec2ForCTC.from_pretrained("hf-internal-testing/tiny-random-wav2vec2-adapter")
        logits = get_logits(model, input_features)

        model.load_adapter("eng")
        model.load_adapter("eng", use_safetensors=False)
        model.load_adapter("eng", use_safetensors=True)

        logits_2 = get_logits(model, input_features)

        self.assertTrue(torch.allclose(logits, logits_2, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
1275
1276
1277
1278
1279
1280
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


1281
1282
1283
1284
1285
1286
1287
1288
@require_torch
class Wav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

1289
1290
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
1291
1292
1293

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
    def test_compute_mask_indices_low_prob(self):
        # with these settings num_masked_spans=0.5, which means probabilistic rounding
        # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
        # the other 5 out of 10, cases num_masked_spans=1
        n_trials = 100
        batch_size = 4
        sequence_length = 100
        mask_prob = 0.05
        mask_length = 10

        count_dimensions_masked = 0
        count_dimensions_not_masked = 0

        for _ in range(n_trials):
            mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
            mask = torch.from_numpy(mask).to(torch_device)

            num_masks = torch.sum(mask).item()

            if num_masks > 0:
                count_dimensions_masked += 1
            else:
                count_dimensions_not_masked += 1

        # as we test for at least 10 masked dimension and at least
        # 10 non-masked dimension, this test could fail with probability:
        # P(100 coin flips, at most 9 heads) = 1.66e-18
        self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
        self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))

1324
1325
    def test_compute_mask_indices_overlap(self):
        batch_size = 4
Anton Lozhkov's avatar
Anton Lozhkov committed
1326
        sequence_length = 80
1327
1328
1329
        mask_prob = 0.5
        mask_length = 4

1330
1331
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
1332

Anton Lozhkov's avatar
Anton Lozhkov committed
1333
        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
1334
        for batch_sum in mask.sum(axis=-1):
Anton Lozhkov's avatar
Anton Lozhkov committed
1335
1336
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
    def test_compute_mask_indices_attn_mask_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        attention_mask[:2, sequence_length // 2 :] = 0

        mask = _compute_mask_indices(
1347
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
1348
        )
1349
        mask = torch.from_numpy(mask).to(torch_device)
1350
1351
1352
1353
1354
1355

        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

        self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
    def test_compute_mask_indices_short_audio(self):
        batch_size = 4
        sequence_length = 100
        mask_prob = 0.05
        mask_length = 10

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        # force one example to be heavily padded
        attention_mask[0, 5:] = 0

        mask = _compute_mask_indices(
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2
        )

        # make sure that non-padded examples cannot be padded
        self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any())

Anton Lozhkov's avatar
Anton Lozhkov committed
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    def test_compute_perplexity(self):
        probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
        self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)

        # mask half of the input
        mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
        mask[0] = 0

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
        self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)

    def test_sample_negatives(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3
1391
1392
1393
        sequence = torch.div(
            torch.arange(sequence_length * hidden_size, device=torch_device), hidden_size, rounding_mode="floor"
        )
1394
        features = sequence.view(sequence_length, hidden_size)  # each value in vector consits of same value
Anton Lozhkov's avatar
Anton Lozhkov committed
1395
1396
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

1397
1398
1399
1400
1401
        # sample negative indices
        sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
        negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
        negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1402
1403
1404
1405
1406
1407
1408
        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
1409
        self.assertEqual(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
1410

1411
    def test_sample_negatives_with_mask(self):
1412
1413
1414
1415
1416
1417
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        # second half of last input tensor is padded
1418
1419
        mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        mask[-1, sequence_length // 2 :] = 0
1420

1421
1422
1423
        sequence = torch.div(
            torch.arange(sequence_length * hidden_size, device=torch_device), hidden_size, rounding_mode="floor"
        )
1424
        features = sequence.view(sequence_length, hidden_size)  # each value in vector consits of same value
1425
1426
1427
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

        # replace masked feature vectors with -100 to test that those are not sampled
1428
        features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100)
1429

1430
1431
1432
1433
1434
1435
1436
        # sample negative indices
        sampled_negative_indices = _sample_negative_indices(
            (batch_size, sequence_length), num_negatives, mask.cpu().numpy()
        )
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
        negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
        negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

        self.assertTrue((negatives >= 0).all().item())

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
1447
        self.assertEqual(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
1448

1449

Patrick von Platen's avatar
Patrick von Platen committed
1450
1451
@require_torch
@require_soundfile
Anton Lozhkov's avatar
Anton Lozhkov committed
1452
@slow
Patrick von Platen's avatar
Patrick von Platen committed
1453
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
1454
1455
1456
1457
1458
1459
    def tearDown(self):
        super().tearDown()
        # clean-up as much as possible GPU memory occupied by PyTorch
        gc.collect()
        torch.cuda.empty_cache()

Patrick von Platen's avatar
Patrick von Platen committed
1460
    def _load_datasamples(self, num_samples):
Patrick von Platen's avatar
Patrick von Platen committed
1461
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1462
1463
1464
1465
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]
1466

1467
        return [x["array"] for x in speech_samples]
Patrick von Platen's avatar
Patrick von Platen committed
1468

1469
1470
1471
1472
1473
    def _load_superb(self, task, num_samples):
        ds = load_dataset("anton-l/superb_dummy", task, split="test")

        return ds[:num_samples]

1474
    def test_inference_ctc_normal(self):
1475
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
1476
        model.to(torch_device)
1477
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1478
1479
        input_speech = self._load_datasamples(1)

1480
        input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1481
1482
1483
1484
1485

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
1486
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1487
1488
1489
1490

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1491
    def test_inference_ctc_normal_batched(self):
1492
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
1493
        model.to(torch_device)
1494
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1495
1496
1497

        input_speech = self._load_datasamples(2)

1498
        inputs = processor(input_speech, return_tensors="pt", padding=True)
1499
1500

        input_values = inputs.input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1501
1502
1503
1504
1505

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
1506
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1507
1508
1509
1510
1511
1512
1513

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1514
    def test_inference_ctc_robust_batched(self):
1515
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
1516
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1517
1518
1519

        input_speech = self._load_datasamples(4)

1520
        inputs = processor(input_speech, return_tensors="pt", padding=True)
1521
1522
1523

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1524
1525

        with torch.no_grad():
1526
            logits = model(input_values, attention_mask=attention_mask).logits
Patrick von Platen's avatar
Patrick von Platen committed
1527
1528

        predicted_ids = torch.argmax(logits, dim=-1)
1529
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1530
1531
1532
1533

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
Sylvain Gugger's avatar
Sylvain Gugger committed
1534
1535
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
            " him with the thousands of spectators were trivialities not worth thinking about",
Patrick von Platen's avatar
Patrick von Platen committed
1536
1537
1538
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
Anton Lozhkov's avatar
Anton Lozhkov committed
1539

1540
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
1541
    def test_inference_integration(self):
1542
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1543
        model.to(torch_device)
1544
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1545
1546
1547
1548
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

1549
1550
1551
1552
        batch_size = inputs_dict["input_values"].shape[0]
        feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))

        features_shape = (batch_size, feature_seq_length)
Anton Lozhkov's avatar
Anton Lozhkov committed
1553

1554
        np.random.seed(4)
Anton Lozhkov's avatar
Anton Lozhkov committed
1555
1556
1557
1558
1559
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1560
1561
        )
        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

1575
1576
        # cosine similarity of model is all > 0.5 as model is
        # pre-trained on contrastive loss
Anton Lozhkov's avatar
Anton Lozhkov committed
1577
        # fmt: off
1578
1579
1580
1581
1582
1583
1584
        expected_cosine_sim_masked = torch.tensor([
            0.8523, 0.5860, 0.6905, 0.5557, 0.7456, 0.5249, 0.6639, 0.7654, 0.7565,
            0.8167, 0.8222, 0.7960, 0.8034, 0.8166, 0.8310, 0.8263, 0.8274, 0.8258,
            0.8179, 0.8412, 0.8536, 0.5098, 0.4728, 0.6461, 0.4498, 0.6002, 0.5774,
            0.6457, 0.7123, 0.5668, 0.6866, 0.4960, 0.6293, 0.7423, 0.7419, 0.7526,
            0.7768, 0.4898, 0.5393, 0.8183
        ], device=torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1585
1586
1587
1588
1589
        # fmt: on

        self.assertTrue(torch.allclose(cosine_sim_masked, expected_cosine_sim_masked, atol=1e-3))

    def test_inference_pretrained(self):
1590
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1591
1592
        model.to(torch_device)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
1593
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
1594
1595
1596
1597
1598
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

1599
1600
1601
1602
        batch_size = inputs_dict["input_values"].shape[0]
        feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))

        features_shape = (batch_size, feature_seq_length)
Anton Lozhkov's avatar
Anton Lozhkov committed
1603
1604
1605
1606
1607
1608
1609

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1610
1611
        )
        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # ... now compare to randomly initialized model

1628
        config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
        model_rand = Wav2Vec2ForPreTraining(config).to(torch_device).eval()

        with torch.no_grad():
            outputs_rand = model_rand(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim_rand = torch.cosine_similarity(
            outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]

        # a pretrained wav2vec2 model has learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states > 0.5
        # a random wav2vec2 model has not learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states is very likely < 0.1
        self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)

1652
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
1653
1654
    def test_loss_pretraining(self):
        model = Wav2Vec2ForPreTraining.from_pretrained(
1655
            "facebook/wav2vec2-base",
Anton Lozhkov's avatar
Anton Lozhkov committed
1656
1657
1658
1659
1660
1661
1662
1663
            attention_dropout=0.0,
            feat_proj_dropout=0.0,
            hidden_dropout=0.0,
            layerdrop=0.0,
        )
        model.to(torch_device).train()

        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
1664
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
1665
1666
1667
1668
1669
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

1670
1671
1672
1673
        batch_size = inputs_dict["input_values"].shape[0]
        feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))

        features_shape = (batch_size, feature_seq_length)
Anton Lozhkov's avatar
Anton Lozhkov committed
1674
1675

        torch.manual_seed(0)
1676
1677
        np.random.seed(0)

Anton Lozhkov's avatar
Anton Lozhkov committed
1678
1679
1680
1681
1682
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1683
1684
1685
1686
1687
1688
1689
        )
        sampled_negative_indices = _sample_negative_indices(
            mask_time_indices.shape, model.config.num_negatives, mask_time_indices
        )

        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1690
1691
1692
1693
1694
1695

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
1696
                sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
1697
1698
1699
1700
1701
            )

        # check diversity loss
        num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
        diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
1702
        self.assertTrue(abs(diversity_loss.item() - 0.9538) < 1e-3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1703
1704

        # check overall loss (contrastive loss + diversity loss)
1705
        expected_loss = 116.7094
Anton Lozhkov's avatar
Anton Lozhkov committed
1706
1707

        self.assertTrue(abs(outputs.loss.item() - expected_loss) < 1e-3)
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796

    def test_inference_keyword_spotting(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
        input_data = self._load_superb("ks", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [7, 6, 10, 9]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([6.1186, 11.8961, 10.2931, 6.0898], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_intent_classification(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
        input_data = self._load_superb("ic", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)

        predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1)
        predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1)
        predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1)

        expected_labels_action = [0, 0, 2, 3]
        expected_logits_action = torch.tensor([0.4568, 11.0848, 1.6621, 9.3841], device=torch_device)
        expected_labels_object = [3, 10, 3, 4]
        expected_logits_object = torch.tensor([1.5322, 10.7094, 5.2469, 22.1318], device=torch_device)
        expected_labels_location = [0, 0, 0, 1]
        expected_logits_location = torch.tensor([1.5335, 6.5096, 10.5704, 11.0569], device=torch_device)

        self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action)
        self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object)
        self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location)

        self.assertTrue(torch.allclose(predicted_logits_action, expected_logits_action, atol=1e-2))
        self.assertTrue(torch.allclose(predicted_logits_object, expected_logits_object, atol=1e-2))
        self.assertTrue(torch.allclose(predicted_logits_location, expected_logits_location, atol=1e-2))

    def test_inference_speaker_identification(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
        input_data = self._load_superb("si", 4)

        output_logits = []
        with torch.no_grad():
            for example in input_data["speech"]:
                input = processor(example, return_tensors="pt", padding=True)
                output = model(input.input_values.to(torch_device), attention_mask=None)
                output_logits.append(output.logits[0])
        output_logits = torch.stack(output_logits)
        predicted_logits, predicted_ids = torch.max(output_logits, dim=-1)

        expected_labels = [251, 1, 1, 3]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([37.5627, 71.6362, 64.2419, 31.7778], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_emotion_recognition(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
        input_data = self._load_superb("er", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [1, 1, 2, 2]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([2.1722, 3.0779, 8.0287, 6.6797], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))
1797

1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
    def test_phoneme_recognition(self):
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft").to(torch_device)
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")

        input_speech = self._load_datasamples(4)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        with torch.no_grad():
            logits = model(input_values, attention_mask=attention_mask).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "ɐ m æ n s ɛ d t ə ð ə j uː n ɪ v ɚ s s ɚ aɪ ɛ ɡ z ɪ s t",
Sylvain Gugger's avatar
Sylvain Gugger committed
1817
1818
1819
1820
1821
            "s w ɛ t k ʌ v ɚ d b ɹ iː ɔ n z b ɑː d i t ɹ ɪ k l ɪ ŋ ɪ n t ə ð ə t aɪ t l oɪ n k l ɑː θ ð æ w ʌ z ð ɪ oʊ"
            " n l i ɡ ɑːɹ m ə n t h iː w ɔːɹ",
            "ð ə k aɪ t ɔ n h ɪ z tʃ ɛ s t s t ɪ l d ɹ ɪ p ɪ ŋ b l ʌ d ð ɪ eɪ k ʌ v h ɪ z oʊ v ɚ s t ɹ eɪ n d aɪ z iː"
            " v ə n ð ə s ɔːɹ ɹ ɪ ŋ ɐ ɹ iː n ɐ ɚ ɹ aʊ n d h ɪ m w ɪ ð ə θ aʊ z ə n d z ʌ v s p ɛ k t eɪ ɾ ɚ z w ɜː t ɹ"
            " ɪ v ɪ æ l ᵻ ɾ i z n ɑː t w ɜː θ θ ɪ ŋ k ɪ ŋ ɐ b aʊ t",
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
            "h ɪ z ɪ n s t ə n t v p æ n ɪ k w ʌ z f ɑː l oʊ d b aɪ ɐ s m ɔː l ʃ ɑːɹ p b l oʊ h aɪ ɔ n h ɪ z tʃ ɛ s t",
        ]
        # should correspond to =>:
        # [
        # "a man said to the universe sir i exist",
        # "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
        # "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
        # "his instant panic was followed by a small sharp blow high on his chest",
        # ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
    @require_pyctcdecode
    @require_torchaudio
    def test_wav2vec2_with_lm(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = torchaudio.functional.resample(
            torch.tensor(sample["audio"]["array"]), 48_000, 16_000
        ).numpy()

        model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
            torch_device
        )
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values.to(torch_device)).logits

        transcription = processor.batch_decode(logits.cpu().numpy()).text

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
1856

1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
    @require_pyctcdecode
    @require_torchaudio
    def test_wav2vec2_with_lm_pool(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = torchaudio.functional.resample(
            torch.tensor(sample["audio"]["array"]), 48_000, 16_000
        ).numpy()

        model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
            torch_device
        )
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values.to(torch_device)).logits

        # test user-managed pool
        with multiprocessing.get_context("fork").Pool(2) as pool:
1879
            transcription = processor.batch_decode(logits.cpu().numpy(), pool).text
1880
1881
1882
1883
1884
1885
1886

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

        # user-managed pool + num_processes should trigger a warning
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
            2
        ) as pool:
1887
            transcription = processor.batch_decode(logits.cpu().numpy(), pool, num_processes=2).text
1888
1889
1890
1891
1892
1893
1894
1895
1896

        self.assertIn("num_process", cl.out)
        self.assertIn("it will be ignored", cl.out)

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

    @require_pyctcdecode
    @require_torchaudio
    def test_wav2vec2_with_lm_invalid_pool(self):
1897
        run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
1898

1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
    def test_inference_diarization(self):
        model = Wav2Vec2ForAudioFrameClassification.from_pretrained("anton-l/wav2vec2-base-superb-sd").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("anton-l/wav2vec2-base-superb-sd")
        input_data = self._load_superb("sd", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        # labels is a one-hot array of shape (num_frames, num_speakers)
        labels = (outputs.logits > 0).long()

        # s3prl logits for the same batch
        expected_logits = torch.tensor(
            [
                [[-5.2807, -5.1272], [-5.4059, -4.7757], [-5.2764, -4.9621], [-5.0117, -4.5851]],
                [[-1.7643, -0.5462], [-1.7369, -0.2649], [-1.5066, -0.6200], [-4.5703, -2.4863]],
                [[-0.8656, -0.4783], [-0.8899, -0.3289], [-0.9267, -0.5781], [-0.7817, -0.4619]],
                [[-4.8625, -2.5316], [-5.2339, -2.2155], [-4.9835, -2.0344], [-4.4727, -1.8421]],
            ],
            device=torch_device,
        )
        self.assertEqual(labels[0, :, 0].sum(), 555)
        self.assertEqual(labels[0, :, 1].sum(), 299)
1924
1925
        # TODO: update the tolerance after the CI moves to torch 1.10
        self.assertTrue(torch.allclose(outputs.logits[:, :4], expected_logits, atol=1e-2))
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948

    def test_inference_speaker_verification(self):
        model = Wav2Vec2ForXVector.from_pretrained("anton-l/wav2vec2-base-superb-sv").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("anton-l/wav2vec2-base-superb-sv")
        input_data = self._load_superb("si", 4)

        inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)
        labels = torch.tensor([5, 1, 1, 3], device=torch_device).T

        with torch.no_grad():
            input_values = inputs.input_values.to(torch_device)
            attention_mask = inputs.attention_mask.to(torch_device)
            outputs = model(input_values, attention_mask=attention_mask, labels=labels)
        embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1).cpu()

        cosine_sim = torch.nn.CosineSimilarity(dim=-1)
        # id10002 vs id10002
        self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).numpy(), 0.9758, 3)
        # id10006 vs id10002
        self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).numpy(), 0.7579, 3)
        # id10002 vs id10004
        self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).numpy(), 0.7594, 3)

1949
1950
        # TODO: update the tolerance after the CI moves to torch 1.10
        self.assertAlmostEqual(outputs.loss.item(), 17.7963, 2)
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992

    @require_torchaudio
    def test_inference_mms_1b_all(self):
        model = Wav2Vec2ForCTC.from_pretrained("facebook/mms-1b-all").to(torch_device)
        processor = Wav2Vec2Processor.from_pretrained("facebook/mms-1b-all")

        LANG_MAP = {"it": "ita", "es": "spa", "fr": "fra", "en": "eng"}

        def run_model(lang):
            ds = load_dataset("common_voice", lang, split="test", streaming=True)
            sample = next(iter(ds))

            wav2vec2_lang = LANG_MAP[lang]

            model.load_adapter(wav2vec2_lang)
            processor.tokenizer.set_target_lang(wav2vec2_lang)

            resampled_audio = torchaudio.functional.resample(
                torch.tensor(sample["audio"]["array"]), 48_000, 16_000
            ).numpy()

            inputs = processor(resampled_audio, sampling_rate=16_000, return_tensors="pt")
            input_values = inputs.input_values.to(torch_device)
            attention_mask = inputs.attention_mask.to(torch_device)

            with torch.no_grad():
                outputs = model(input_values, attention_mask=attention_mask).logits

            ids = torch.argmax(outputs, dim=-1)[0]

            transcription = processor.decode(ids)
            return transcription

        TRANSCRIPTIONS = {
            "it": "mi hanno fatto un'offerta che non potevo proprio rifiutare",
            "es": "bien y qué regalo vas a abrir primero",
            "fr": "un vrai travail intéressant va enfin être mené sur ce sujet",
            "en": "twas the time of day and olof spen slept during the summer",
        }

        for lang in LANG_MAP.keys():
            assert run_model(lang) == TRANSCRIPTIONS[lang]