"tests/xlnet/test_tokenization_xlnet.py" did not exist on "4f8b5f687cc9a2837bdb19ca0a204f325f6b28e8"
test_modeling_wav2vec2.py 73.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Wav2Vec2 model. """

import math
18
import multiprocessing
19
20
21
import os
import pickle
import tempfile
22
import traceback
Patrick von Platen's avatar
Patrick von Platen committed
23
24
import unittest

25
import numpy as np
26
from datasets import load_dataset
27

28
from transformers import Wav2Vec2Config, is_torch_available
29
from transformers.testing_utils import (
30
    CaptureLogger,
31
    is_pt_flax_cross_test,
32
33
34
    is_pyctcdecode_available,
    is_torchaudio_available,
    require_pyctcdecode,
35
36
    require_soundfile,
    require_torch,
37
    require_torchaudio,
38
    run_test_in_subprocess,
39
40
41
    slow,
    torch_device,
)
42
from transformers.utils import is_torch_fx_available
Patrick von Platen's avatar
Patrick von Platen committed
43

Yih-Dar's avatar
Yih-Dar committed
44
45
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
46
47
48
49
50
51
    ModelTesterMixin,
    _config_zero_init,
    floats_tensor,
    ids_tensor,
    random_attention_mask,
)
52
from ...test_pipeline_mixin import PipelineTesterMixin
Patrick von Platen's avatar
Patrick von Platen committed
53
54
55
56
57


if is_torch_available():
    import torch

Anton Lozhkov's avatar
Anton Lozhkov committed
58
59
    from transformers import (
        Wav2Vec2FeatureExtractor,
60
        Wav2Vec2ForAudioFrameClassification,
Anton Lozhkov's avatar
Anton Lozhkov committed
61
62
63
        Wav2Vec2ForCTC,
        Wav2Vec2ForMaskedLM,
        Wav2Vec2ForPreTraining,
64
        Wav2Vec2ForSequenceClassification,
65
        Wav2Vec2ForXVector,
Anton Lozhkov's avatar
Anton Lozhkov committed
66
67
68
        Wav2Vec2Model,
        Wav2Vec2Processor,
    )
69
70
71
72
73
    from transformers.models.wav2vec2.modeling_wav2vec2 import (
        Wav2Vec2GumbelVectorQuantizer,
        _compute_mask_indices,
        _sample_negative_indices,
    )
74
    from transformers.pytorch_utils import is_torch_less_than_1_9, torch_int_div
75
76
else:
    is_torch_less_than_1_9 = True
Patrick von Platen's avatar
Patrick von Platen committed
77
78


79
80
81
82
83
if is_torchaudio_available():
    import torchaudio


if is_pyctcdecode_available():
84
    import pyctcdecode.decoder
85

86
    from transformers import Wav2Vec2ProcessorWithLM
87
    from transformers.models.wav2vec2_with_lm import processing_wav2vec2_with_lm
88
89


90
91
92
93
if is_torch_fx_available():
    from transformers.utils.fx import symbolic_trace


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def _test_wav2vec2_with_lm_invalid_pool(in_queue, out_queue, timeout):
    error = None
    try:
        _ = in_queue.get(timeout=timeout)

        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = torchaudio.functional.resample(
            torch.tensor(sample["audio"]["array"]), 48_000, 16_000
        ).numpy()

        model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
            torch_device
        )
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values.to(torch_device)).logits

        # use a spawn pool, which should trigger a warning if different than fork
        with CaptureLogger(pyctcdecode.decoder.logger) as cl, multiprocessing.get_context("spawn").Pool(1) as pool:
            transcription = processor.batch_decode(logits.cpu().numpy(), pool).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

        # force batch_decode to internally create a spawn pool, which should trigger a warning if different than fork
        multiprocessing.set_start_method("spawn", force=True)
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl:
            transcription = processor.batch_decode(logits.cpu().numpy()).text

        unittest.TestCase().assertIn("Falling back to sequential decoding.", cl.out)
        unittest.TestCase().assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
class Wav2Vec2ModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        seq_length=1024,  # speech is longer
        is_training=False,
        hidden_size=16,
        feat_extract_norm="group",
        feat_extract_dropout=0.0,
        feat_extract_activation="gelu",
        conv_dim=(32, 32, 32),
        conv_stride=(4, 4, 4),
        conv_kernel=(8, 8, 8),
        conv_bias=False,
        num_conv_pos_embeddings=16,
        num_conv_pos_embedding_groups=2,
        num_hidden_layers=4,
        num_attention_heads=2,
        hidden_dropout_prob=0.1,  # this is most likely not correctly set yet
        intermediate_size=20,
        layer_norm_eps=1e-5,
        hidden_act="gelu",
        initializer_range=0.02,
162
163
        mask_time_prob=0.5,
        mask_time_length=2,
Patrick von Platen's avatar
Patrick von Platen committed
164
165
        vocab_size=32,
        do_stable_layer_norm=False,
166
167
        num_adapter_layers=1,
        adapter_stride=2,
168
169
170
171
        tdnn_dim=(32, 32),
        tdnn_kernel=(5, 3),
        tdnn_dilation=(1, 2),
        xvector_output_dim=32,
Patrick von Platen's avatar
Patrick von Platen committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.seq_length = seq_length
        self.is_training = is_training
        self.hidden_size = hidden_size
        self.feat_extract_norm = feat_extract_norm
        self.feat_extract_dropout = feat_extract_dropout
        self.feat_extract_activation = feat_extract_activation
        self.conv_dim = conv_dim
        self.conv_stride = conv_stride
        self.conv_kernel = conv_kernel
        self.conv_bias = conv_bias
        self.num_conv_pos_embeddings = num_conv_pos_embeddings
        self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_dropout_prob = hidden_dropout_prob
        self.intermediate_size = intermediate_size
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.vocab_size = vocab_size
        self.do_stable_layer_norm = do_stable_layer_norm
197
198
        self.num_adapter_layers = num_adapter_layers
        self.adapter_stride = adapter_stride
199
200
        self.mask_time_prob = mask_time_prob
        self.mask_time_length = mask_time_length
Patrick von Platen's avatar
Patrick von Platen committed
201
        self.scope = scope
202
203
204
205
        self.tdnn_dim = tdnn_dim
        self.tdnn_kernel = tdnn_kernel
        self.tdnn_dilation = tdnn_dilation
        self.xvector_output_dim = xvector_output_dim
Patrick von Platen's avatar
Patrick von Platen committed
206
207
208
209
210
211
212

        output_seq_length = self.seq_length
        for kernel, stride in zip(self.conv_kernel, self.conv_stride):
            output_seq_length = (output_seq_length - (kernel - 1)) / stride
        self.output_seq_length = int(math.ceil(output_seq_length))
        self.encoder_seq_length = self.output_seq_length

213
214
        self.adapter_output_seq_length = (self.output_seq_length - 1) // adapter_stride + 1

Patrick von Platen's avatar
Patrick von Platen committed
215
    def prepare_config_and_inputs(self):
216
        input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
217
        attention_mask = random_attention_mask([self.batch_size, self.seq_length])
Patrick von Platen's avatar
Patrick von Platen committed
218

219
220
221
222
223
224
        config = self.get_config()

        return config, input_values, attention_mask

    def get_config(self):
        return Wav2Vec2Config(
Patrick von Platen's avatar
Patrick von Platen committed
225
226
227
228
229
230
231
232
            hidden_size=self.hidden_size,
            feat_extract_norm=self.feat_extract_norm,
            feat_extract_dropout=self.feat_extract_dropout,
            feat_extract_activation=self.feat_extract_activation,
            conv_dim=self.conv_dim,
            conv_stride=self.conv_stride,
            conv_kernel=self.conv_kernel,
            conv_bias=self.conv_bias,
233
234
            mask_time_prob=self.mask_time_prob,
            mask_time_length=self.mask_time_length,
Patrick von Platen's avatar
Patrick von Platen committed
235
236
237
238
239
240
241
            num_conv_pos_embeddings=self.num_conv_pos_embeddings,
            num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            hidden_dropout_prob=self.hidden_dropout_prob,
            intermediate_size=self.intermediate_size,
            layer_norm_eps=self.layer_norm_eps,
242
            do_stable_layer_norm=self.do_stable_layer_norm,
Patrick von Platen's avatar
Patrick von Platen committed
243
244
245
            hidden_act=self.hidden_act,
            initializer_range=self.initializer_range,
            vocab_size=self.vocab_size,
246
247
            num_adapter_layers=self.num_adapter_layers,
            adapter_stride=self.adapter_stride,
248
249
250
251
            tdnn_dim=self.tdnn_dim,
            tdnn_kernel=self.tdnn_kernel,
            tdnn_dilation=self.tdnn_dilation,
            xvector_output_dim=self.xvector_output_dim,
Patrick von Platen's avatar
Patrick von Platen committed
252
253
        )

254
    def create_and_check_model(self, config, input_values, attention_mask):
Patrick von Platen's avatar
Patrick von Platen committed
255
256
257
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
258
        result = model(input_values, attention_mask=attention_mask)
Patrick von Platen's avatar
Patrick von Platen committed
259
260
261
262
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
        )

263
264
265
266
267
268
269
270
271
272
    def create_and_check_model_with_adapter(self, config, input_values, attention_mask):
        config.add_adapter = True
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape, (self.batch_size, self.adapter_output_seq_length, self.hidden_size)
        )

273
274
275
276
277
278
279
280
281
282
283
    def create_and_check_model_with_adapter_for_ctc(self, config, input_values, attention_mask):
        config.add_adapter = True
        config.output_hidden_size = 2 * config.hidden_size
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.logits.shape, (self.batch_size, self.adapter_output_seq_length, self.vocab_size)
        )

284
285
286
287
288
289
290
291
292
293
294
295
    def create_and_check_model_with_adapter_proj_dim(self, config, input_values, attention_mask):
        config.add_adapter = True
        config.output_hidden_size = 8
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()
        result = model(input_values, attention_mask=attention_mask)
        self.parent.assertEqual(
            result.last_hidden_state.shape,
            (self.batch_size, self.adapter_output_seq_length, config.output_hidden_size),
        )

296
    def create_and_check_batch_inference(self, config, input_values, *args):
297
        # test does not pass for models making use of `group_norm`
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
        # check: https://github.com/pytorch/fairseq/issues/3227
        model = Wav2Vec2Model(config=config)
        model.to(torch_device)
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0.0

        batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state

        for i in range(input_values.shape[0]):
            input_slice = input_values[i : i + 1, : input_lengths[i]]
            output = model(input_slice).last_hidden_state

            batch_output = batch_outputs[i : i + 1, : output.shape[1]]
            self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))

322
323
324
325
326
327
328
329
    def check_ctc_loss(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
330
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
331
332
333
334
335
336
337
338

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
339
            attention_mask[i, input_lengths[i] :] = 0
340
341

        model.config.ctc_loss_reduction = "sum"
342
        sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
343
344

        model.config.ctc_loss_reduction = "mean"
345
        mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
346

347
348
        self.parent.assertTrue(isinstance(sum_loss, float))
        self.parent.assertTrue(isinstance(mean_loss, float))
349

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
    def check_seq_classifier_loss(self, config, input_values, *args):
        model = Wav2Vec2ForSequenceClassification(config=config)
        model.to(torch_device)

        # make sure that dropout is disabled
        model.eval()

        input_values = input_values[:3]
        attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0
            attention_mask[i, input_lengths[i] :] = 0

        masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
        unmasked_loss = model(input_values, labels=labels).loss.item()

        self.parent.assertTrue(isinstance(masked_loss, float))
        self.parent.assertTrue(isinstance(unmasked_loss, float))
        self.parent.assertTrue(masked_loss != unmasked_loss)

    def check_ctc_training(self, config, input_values, *args):
376
377
378
379
380
381
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForCTC(config=config)
        model.to(torch_device)
        model.train()

        # freeze feature encoder
382
        model.freeze_feature_encoder()
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

            if max_length_labels[i] < labels.shape[-1]:
                # it's important that we make sure that target lenghts are at least
                # one shorter than logit lenghts to prevent -inf
                labels[i, max_length_labels[i] - 1 :] = -100

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
    def check_seq_classifier_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForSequenceClassification(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    def check_xvector_training(self, config, input_values, *args):
        config.ctc_zero_infinity = True
        model = Wav2Vec2ForXVector(config=config)
        model.to(torch_device)
        model.train()

        # freeze everything but the classification head
        model.freeze_base_model()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))

        # pad input
        for i in range(len(input_lengths)):
            input_values[i, input_lengths[i] :] = 0.0

        loss = model(input_values, labels=labels).loss
        self.parent.assertFalse(torch.isinf(loss).item())

        loss.backward()

450
451
452
453
454
455
456
457
458
459
460
    def check_labels_out_of_vocab(self, config, input_values, *args):
        model = Wav2Vec2ForCTC(config)
        model.to(torch_device)
        model.train()

        input_values = input_values[:3]

        input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
        max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
        labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)

461
        with self.parent.assertRaises(ValueError):
462
463
            model(input_values, labels=labels)

Patrick von Platen's avatar
Patrick von Platen committed
464
    def prepare_config_and_inputs_for_common(self):
465
466
        config, input_values, attention_mask = self.prepare_config_and_inputs()
        inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
Patrick von Platen's avatar
Patrick von Platen committed
467
468
469
470
        return config, inputs_dict


@require_torch
471
class Wav2Vec2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Patrick von Platen's avatar
Patrick von Platen committed
472
    all_model_classes = (
473
474
475
        (Wav2Vec2ForCTC, Wav2Vec2Model, Wav2Vec2ForMaskedLM, Wav2Vec2ForSequenceClassification, Wav2Vec2ForPreTraining)
        if is_torch_available()
        else ()
Patrick von Platen's avatar
Patrick von Platen committed
476
    )
477
478
479
480
481
482
483
484
485
486
    pipeline_model_mapping = (
        {
            "audio-classification": Wav2Vec2ForSequenceClassification,
            "automatic-speech-recognition": Wav2Vec2ForCTC,
            "feature-extraction": Wav2Vec2Model,
            "fill-mask": Wav2Vec2ForMaskedLM,
        }
        if is_torch_available()
        else {}
    )
487
    fx_compatible = True
Patrick von Platen's avatar
Patrick von Platen committed
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    test_pruning = False
    test_headmasking = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(self)
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

502
503
504
505
    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

506
507
508
509
    def test_model_with_adapter_for_ctc(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_for_ctc(*config_and_inputs)

510
511
512
513
    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)

514
515
516
517
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

518
    def test_seq_classifier_loss_inference(self):
519
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
520
521
522
523
524
525
526
527
528
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
529

530
531
532
533
    def test_xvector_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_xvector_training(*config_and_inputs)

534
535
536
537
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

557
558
559
560
561
562
563
564
565
566
    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_flax_to_pt(self):
        pass

    @is_pt_flax_cross_test
    # non-robust architecture does not exist in Flax
    def test_equivalence_pt_to_flax(self):
        pass

567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
607
608
609
610
611
612
613
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
614
615
616
617
618
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
619
620
621
622
623
624
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
625
                    "objective.weight",
Anton Lozhkov's avatar
Anton Lozhkov committed
626
                ]
Patrick von Platen's avatar
Patrick von Platen committed
627
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
628
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
629
630
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
631
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
632
633
634
635
636
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
637
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
638
639
                        )

640
641
642
643
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
644
        if hasattr(module, "weight_g") and module.weight_g is not None:
645
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
646
647
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
648
649
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
650
651
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
652
653
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
654

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
    def test_mask_feature_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

701
702
703
704
    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
705
706
707
708
709
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
    # Wav2Vec2 cannot be torchscripted because of group norm.
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                input_names = [
                    "attention_mask",
                    "bbox",
                    "input_features",
                    "input_ids",
                    "input_values",
                    "pixel_values",
                    "token_type_ids",
                    "visual_feats",
                    "visual_pos",
                ]

                labels = inputs.get("labels", None)
                start_positions = inputs.get("start_positions", None)
                end_positions = inputs.get("end_positions", None)
                if labels is not None:
                    input_names.append("labels")
                if start_positions is not None:
                    input_names.append("start_positions")
                if end_positions is not None:
                    input_names.append("end_positions")

                filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                input_names = list(filtered_inputs.keys())

                model_output = model(**filtered_inputs)

                if (
                    isinstance(model, Wav2Vec2ForSequenceClassification)
                    and not hasattr(model.config, "problem_type")
                    or model.config.problem_type is None
                ):
                    model.config.problem_type = "single_label_classification"

                traced_model = symbolic_trace(model, input_names)
                traced_output = traced_model(**filtered_inputs)

            except Exception as e:
                self.fail(f"Couldn't trace module: {e}")

            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
            num_outputs = len(model_output)

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )

            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
810
811
812

@require_torch
class Wav2Vec2RobustModelTest(ModelTesterMixin, unittest.TestCase):
Anton Lozhkov's avatar
Anton Lozhkov committed
813
    all_model_classes = (
814
815
816
817
818
819
820
821
822
        (
            Wav2Vec2ForCTC,
            Wav2Vec2Model,
            Wav2Vec2ForMaskedLM,
            Wav2Vec2ForSequenceClassification,
            Wav2Vec2ForPreTraining,
            Wav2Vec2ForAudioFrameClassification,
            Wav2Vec2ForXVector,
        )
823
824
        if is_torch_available()
        else ()
Anton Lozhkov's avatar
Anton Lozhkov committed
825
    )
Patrick von Platen's avatar
Patrick von Platen committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
    test_pruning = False
    test_headmasking = False

    def setUp(self):
        self.model_tester = Wav2Vec2ModelTester(
            self, conv_stride=(3, 3, 3), feat_extract_norm="layer", do_stable_layer_norm=True
        )
        self.config_tester = ConfigTester(self, config_class=Wav2Vec2Config, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)
841
842
843
844
845
846
847
848

    def test_model_with_adapter(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter(*config_and_inputs)

    def test_model_with_adapter_proj_dim(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model_with_adapter_proj_dim(*config_and_inputs)
Patrick von Platen's avatar
Patrick von Platen committed
849

850
851
852
853
    def test_batched_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_batch_inference(*config_and_inputs)

854
855
856
857
    def test_ctc_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_ctc_loss(*config_and_inputs)

858
859
860
861
862
    def test_seq_classifier_loss_inference(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_loss(*config_and_inputs)

    def test_ctc_train(self):
863
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
864
865
866
867
868
        self.model_tester.check_ctc_training(*config_and_inputs)

    def test_seq_classifier_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_seq_classifier_training(*config_and_inputs)
869

870
871
872
873
    def test_xvector_train(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_xvector_training(*config_and_inputs)

874
875
876
877
    def test_labels_out_of_vocab(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.check_labels_out_of_vocab(*config_and_inputs)

Patrick von Platen's avatar
Patrick von Platen committed
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
    # Wav2Vec2 has no inputs_embeds
    def test_inputs_embeds(self):
        pass

    # `input_ids` is renamed to `input_values`
    def test_forward_signature(self):
        pass

    # Wav2Vec2 cannot resize token embeddings
    # since it has no tokens embeddings
    def test_resize_tokens_embeddings(self):
        pass

    # Wav2Vec2 has no inputs_embeds
    # and thus the `get_input_embeddings` fn
    # is not implemented
    def test_model_common_attributes(self):
        pass

897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        # set layer drop to 0
        model.config.layerdrop = 0.0

        input_values = inputs_dict["input_values"]

        input_lengths = torch.tensor(
            [input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
        )
        output_lengths = model._get_feat_extract_output_lengths(input_lengths)

        labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
        inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
        inputs_dict["labels"] = labels

        outputs = model(**inputs_dict)

        output = outputs[0]

        # Encoder-/Decoder-only models
        hidden_states = outputs.hidden_states[0]
        attentions = outputs.attentions[0]

        hidden_states.retain_grad()
        attentions.retain_grad()

        output.flatten()[0].backward(retain_graph=True)

        self.assertIsNotNone(hidden_states.grad)
        self.assertIsNotNone(attentions.grad)

Patrick von Platen's avatar
Patrick von Platen committed
937
938
939
940
941
942
943
    def test_initialization(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
Anton Lozhkov's avatar
Anton Lozhkov committed
944
945
946
947
948
                uniform_init_parms = [
                    "conv.weight",
                    "masked_spec_embed",
                    "codevectors",
                    "quantizer.weight_proj.weight",
949
950
951
952
953
954
                    "project_hid.weight",
                    "project_hid.bias",
                    "project_q.weight",
                    "project_q.bias",
                    "feature_projection.projection.weight",
                    "feature_projection.projection.bias",
955
                    "objective.weight",
Anton Lozhkov's avatar
Anton Lozhkov committed
956
                ]
Patrick von Platen's avatar
Patrick von Platen committed
957
                if param.requires_grad:
Anton Lozhkov's avatar
Anton Lozhkov committed
958
                    if any([x in name for x in uniform_init_parms]):
Patrick von Platen's avatar
Patrick von Platen committed
959
960
                        self.assertTrue(
                            -1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
961
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
962
963
964
965
966
                        )
                    else:
                        self.assertIn(
                            ((param.data.mean() * 1e9).round() / 1e9).item(),
                            [0.0, 1.0],
967
                            msg=f"Parameter {name} of model {model_class} seems not properly initialized",
Patrick von Platen's avatar
Patrick von Platen committed
968
969
                        )

970
971
972
973
    # overwrite from test_modeling_common
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
974
        if hasattr(module, "weight_g") and module.weight_g is not None:
975
            module.weight_g.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
976
977
        if hasattr(module, "weight_v") and module.weight_v is not None:
            module.weight_v.data.fill_(3)
978
979
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
980
981
        if hasattr(module, "codevectors") and module.codevectors is not None:
            module.codevectors.data.fill_(3)
982
983
        if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
            module.masked_spec_embed.data.fill_(3)
Anton Lozhkov's avatar
Anton Lozhkov committed
984
985
986
987
988

    def test_model_for_pretraining(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        model = Wav2Vec2ForPreTraining(config).to(torch_device)

989
990
991
992
        batch_size = inputs_dict["input_values"].shape[0]
        feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))

        features_shape = (batch_size, feature_seq_length)
Anton Lozhkov's avatar
Anton Lozhkov committed
993
994
995
996
997
998

        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
999
1000
1001
1002
1003
        )
        sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices)

        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1004
1005
1006
1007
1008

        loss = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
1009
            sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
1010
1011
        ).loss

1012
        # more losses
Anton Lozhkov's avatar
Anton Lozhkov committed
1013
        mask_time_indices[:, : mask_time_indices.shape[-1] // 2] = True
1014
1015
1016

        sampled_negative_indices = _sample_negative_indices(features_shape, 10, mask_time_indices.cpu().numpy())
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1017
1018
1019
1020
        loss_more_masked = model(
            inputs_dict["input_values"],
            attention_mask=inputs_dict["attention_mask"],
            mask_time_indices=mask_time_indices,
1021
            sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
1022
1023
1024
1025
        ).loss

        # loss_more_masked has to be bigger or equal loss since more masked inputs have to be predicted
        self.assertTrue(loss.detach().item() <= loss_more_masked.detach().item())
1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    def test_mask_feature_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_feature_prob=0.2, mask_feature_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

    def test_mask_time_prob_ctc(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", mask_time_prob=0.2, mask_time_length=2
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [1, 3, 2, 6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (4, 1498, 32))

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
    def test_mask_time_feature_prob_ctc_single_batch(self):
        model = Wav2Vec2ForCTC.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2",
            mask_time_prob=0.2,
            mask_feature_prob=0.2,
            mask_time_length=2,
            mask_feature_length=2,
        )
        model.to(torch_device).train()
        processor = Wav2Vec2Processor.from_pretrained(
            "hf-internal-testing/tiny-random-wav2vec2", return_attention_mask=True
        )

        batch_duration_in_seconds = [6]
        input_features = [np.random.random(16_000 * s) for s in batch_duration_in_seconds]

        batch = processor(
            input_features, padding=True, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt"
        )

        logits = model(
            input_values=batch["input_values"].to(torch_device),
            attention_mask=batch["attention_mask"].to(torch_device),
        ).logits

        self.assertEqual(logits.shape, (1, 1498, 32))

1100
1101
1102
1103
    @unittest.skip(reason="Feed forward chunking is not implemented")
    def test_feed_forward_chunking(self):
        pass

Patrick von Platen's avatar
Patrick von Platen committed
1104
1105
1106
1107
1108
1109
    @slow
    def test_model_from_pretrained(self):
        model = Wav2Vec2Model.from_pretrained("facebook/wav2vec2-base-960h")
        self.assertIsNotNone(model)


1110
1111
1112
1113
1114
1115
1116
1117
@require_torch
class Wav2Vec2UtilsTest(unittest.TestCase):
    def test_compute_mask_indices(self):
        batch_size = 4
        sequence_length = 60
        mask_prob = 0.5
        mask_length = 1

1118
1119
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
1120
1121
1122

        self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])

1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
    def test_compute_mask_indices_low_prob(self):
        # with these settings num_masked_spans=0.5, which means probabilistic rounding
        # ensures that in 5 out of 10 method calls, num_masked_spans=0, and in
        # the other 5 out of 10, cases num_masked_spans=1
        n_trials = 100
        batch_size = 4
        sequence_length = 100
        mask_prob = 0.05
        mask_length = 10

        count_dimensions_masked = 0
        count_dimensions_not_masked = 0

        for _ in range(n_trials):
            mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
            mask = torch.from_numpy(mask).to(torch_device)

            num_masks = torch.sum(mask).item()

            if num_masks > 0:
                count_dimensions_masked += 1
            else:
                count_dimensions_not_masked += 1

        # as we test for at least 10 masked dimension and at least
        # 10 non-masked dimension, this test could fail with probability:
        # P(100 coin flips, at most 9 heads) = 1.66e-18
        self.assertGreater(count_dimensions_masked, int(n_trials * 0.1))
        self.assertGreater(count_dimensions_not_masked, int(n_trials * 0.1))

1153
1154
    def test_compute_mask_indices_overlap(self):
        batch_size = 4
Anton Lozhkov's avatar
Anton Lozhkov committed
1155
        sequence_length = 80
1156
1157
1158
        mask_prob = 0.5
        mask_length = 4

1159
1160
        mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
        mask = torch.from_numpy(mask).to(torch_device)
1161

Anton Lozhkov's avatar
Anton Lozhkov committed
1162
        # because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
1163
        for batch_sum in mask.sum(axis=-1):
Anton Lozhkov's avatar
Anton Lozhkov committed
1164
1165
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    def test_compute_mask_indices_attn_mask_overlap(self):
        batch_size = 4
        sequence_length = 80
        mask_prob = 0.5
        mask_length = 4

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        attention_mask[:2, sequence_length // 2 :] = 0

        mask = _compute_mask_indices(
1176
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask
1177
        )
1178
        mask = torch.from_numpy(mask).to(torch_device)
1179
1180
1181
1182
1183
1184

        for batch_sum in mask.sum(axis=-1):
            self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)

        self.assertTrue(mask[:2, sequence_length // 2 :].sum() == 0)

1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
    def test_compute_mask_indices_short_audio(self):
        batch_size = 4
        sequence_length = 100
        mask_prob = 0.05
        mask_length = 10

        attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        # force one example to be heavily padded
        attention_mask[0, 5:] = 0

        mask = _compute_mask_indices(
            (batch_size, sequence_length), mask_prob, mask_length, attention_mask=attention_mask, min_masks=2
        )

        # make sure that non-padded examples cannot be padded
        self.assertFalse(mask[0][attention_mask[0].to(torch.bool).cpu()].any())

Anton Lozhkov's avatar
Anton Lozhkov committed
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
    def test_compute_perplexity(self):
        probs = torch.arange(100, device=torch_device).reshape(2, 5, 10) / 100

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs)
        self.assertTrue(abs(ppl.item() - 141.4291) < 1e-3)

        # mask half of the input
        mask = torch.ones((2,), device=torch_device, dtype=torch.bool)
        mask[0] = 0

        ppl = Wav2Vec2GumbelVectorQuantizer._compute_perplexity(probs, mask)
        self.assertTrue(abs(ppl.item() - 58.6757) < 1e-3)

    def test_sample_negatives(self):
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3
1220
1221
        sequence = torch_int_div(torch.arange(sequence_length * hidden_size, device=torch_device), hidden_size)
        features = sequence.view(sequence_length, hidden_size)  # each value in vector consits of same value
Anton Lozhkov's avatar
Anton Lozhkov committed
1222
1223
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

1224
1225
1226
1227
1228
        # sample negative indices
        sampled_negative_indices = _sample_negative_indices((batch_size, sequence_length), num_negatives, None)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
        negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
        negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1229
1230
1231
1232
1233
1234
1235
        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
1236
        self.assertEqual(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
1237

1238
    def test_sample_negatives_with_mask(self):
1239
1240
1241
1242
1243
1244
        batch_size = 2
        sequence_length = 10
        hidden_size = 4
        num_negatives = 3

        # second half of last input tensor is padded
1245
1246
        mask = torch.ones((batch_size, sequence_length), dtype=torch.long, device=torch_device)
        mask[-1, sequence_length // 2 :] = 0
1247

1248
1249
        sequence = torch_int_div(torch.arange(sequence_length * hidden_size, device=torch_device), hidden_size)
        features = sequence.view(sequence_length, hidden_size)  # each value in vector consits of same value
1250
1251
1252
        features = features[None, :].expand(batch_size, sequence_length, hidden_size).contiguous()

        # replace masked feature vectors with -100 to test that those are not sampled
1253
        features = torch.where(mask[:, :, None].expand(features.shape).bool(), features, -100)
1254

1255
1256
1257
1258
1259
1260
1261
        # sample negative indices
        sampled_negative_indices = _sample_negative_indices(
            (batch_size, sequence_length), num_negatives, mask.cpu().numpy()
        )
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
        negatives = features.view(-1, hidden_size)[sampled_negative_indices.long().view(-1)]
        negatives = negatives.view(batch_size, sequence_length, -1, hidden_size).permute(2, 0, 1, 3)
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

        self.assertTrue((negatives >= 0).all().item())

        self.assertTrue(negatives.shape == (num_negatives, batch_size, sequence_length, hidden_size))

        # make sure no negatively sampled vector is actually a positive one
        for negative in negatives:
            self.assertTrue(((negative - features) == 0).sum() == 0.0)

        # make sure that full vectors are sampled and not values of vectors => this means that `unique()` yields a single value for `hidden_size` dim
1272
        self.assertEqual(negatives.unique(dim=-1).shape, (num_negatives, batch_size, sequence_length, 1))
1273

1274

Patrick von Platen's avatar
Patrick von Platen committed
1275
1276
@require_torch
@require_soundfile
Anton Lozhkov's avatar
Anton Lozhkov committed
1277
@slow
Patrick von Platen's avatar
Patrick von Platen committed
1278
1279
class Wav2Vec2ModelIntegrationTest(unittest.TestCase):
    def _load_datasamples(self, num_samples):
Patrick von Platen's avatar
Patrick von Platen committed
1280
        ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
1281
1282
1283
1284
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").filter(
            lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
        )[:num_samples]["audio"]
1285

1286
        return [x["array"] for x in speech_samples]
Patrick von Platen's avatar
Patrick von Platen committed
1287

1288
1289
1290
1291
1292
    def _load_superb(self, task, num_samples):
        ds = load_dataset("anton-l/superb_dummy", task, split="test")

        return ds[:num_samples]

1293
    def test_inference_ctc_normal(self):
1294
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
1295
        model.to(torch_device)
1296
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1297
1298
        input_speech = self._load_datasamples(1)

1299
        input_values = processor(input_speech, return_tensors="pt").input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1300
1301
1302
1303
1304

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
1305
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1306
1307
1308
1309

        EXPECTED_TRANSCRIPTIONS = ["a man said to the universe sir i exist"]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1310
    def test_inference_ctc_normal_batched(self):
1311
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
Patrick von Platen's avatar
Patrick von Platen committed
1312
        model.to(torch_device)
1313
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1314
1315
1316

        input_speech = self._load_datasamples(2)

1317
        inputs = processor(input_speech, return_tensors="pt", padding=True)
1318
1319

        input_values = inputs.input_values.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1320
1321
1322
1323
1324

        with torch.no_grad():
            logits = model(input_values).logits

        predicted_ids = torch.argmax(logits, dim=-1)
1325
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1326
1327
1328
1329
1330
1331
1332

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight lowing cloth that was the only garment he wore",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1333
    def test_inference_ctc_robust_batched(self):
1334
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60-self").to(torch_device)
1335
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60-self", do_lower_case=True)
Patrick von Platen's avatar
Patrick von Platen committed
1336
1337
1338

        input_speech = self._load_datasamples(4)

1339
        inputs = processor(input_speech, return_tensors="pt", padding=True)
1340
1341
1342

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
1343
1344

        with torch.no_grad():
1345
            logits = model(input_values, attention_mask=attention_mask).logits
Patrick von Platen's avatar
Patrick von Platen committed
1346
1347

        predicted_ids = torch.argmax(logits, dim=-1)
1348
        predicted_trans = processor.batch_decode(predicted_ids)
Patrick von Platen's avatar
Patrick von Platen committed
1349
1350
1351
1352

        EXPECTED_TRANSCRIPTIONS = [
            "a man said to the universe sir i exist",
            "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
Sylvain Gugger's avatar
Sylvain Gugger committed
1353
1354
            "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around"
            " him with the thousands of spectators were trivialities not worth thinking about",
Patrick von Platen's avatar
Patrick von Platen committed
1355
1356
1357
            "his instant panic was followed by a small sharp blow high on his chest",
        ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
Anton Lozhkov's avatar
Anton Lozhkov committed
1358

1359
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
1360
    def test_inference_integration(self):
1361
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1362
        model.to(torch_device)
1363
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1364
1365
1366
1367
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

1368
1369
1370
1371
        batch_size = inputs_dict["input_values"].shape[0]
        feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))

        features_shape = (batch_size, feature_seq_length)
Anton Lozhkov's avatar
Anton Lozhkov committed
1372

1373
        np.random.seed(4)
Anton Lozhkov's avatar
Anton Lozhkov committed
1374
1375
1376
1377
1378
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1379
1380
        )
        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

1394
1395
        # cosine similarity of model is all > 0.5 as model is
        # pre-trained on contrastive loss
Anton Lozhkov's avatar
Anton Lozhkov committed
1396
        # fmt: off
1397
1398
1399
1400
1401
1402
1403
        expected_cosine_sim_masked = torch.tensor([
            0.8523, 0.5860, 0.6905, 0.5557, 0.7456, 0.5249, 0.6639, 0.7654, 0.7565,
            0.8167, 0.8222, 0.7960, 0.8034, 0.8166, 0.8310, 0.8263, 0.8274, 0.8258,
            0.8179, 0.8412, 0.8536, 0.5098, 0.4728, 0.6461, 0.4498, 0.6002, 0.5774,
            0.6457, 0.7123, 0.5668, 0.6866, 0.4960, 0.6293, 0.7423, 0.7419, 0.7526,
            0.7768, 0.4898, 0.5393, 0.8183
        ], device=torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1404
1405
1406
1407
1408
        # fmt: on

        self.assertTrue(torch.allclose(cosine_sim_masked, expected_cosine_sim_masked, atol=1e-3))

    def test_inference_pretrained(self):
1409
        model = Wav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1410
1411
        model.to(torch_device)
        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
1412
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
1413
1414
1415
1416
1417
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

1418
1419
1420
1421
        batch_size = inputs_dict["input_values"].shape[0]
        feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))

        features_shape = (batch_size, feature_seq_length)
Anton Lozhkov's avatar
Anton Lozhkov committed
1422
1423
1424
1425
1426
1427
1428

        torch.manual_seed(0)
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1429
1430
        )
        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim = torch.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states, dim=-1)

        # retrieve cosine sim of masked features
        cosine_sim_masked = cosine_sim[mask_time_indices]

        # ... now compare to randomly initialized model

1447
        config = Wav2Vec2Config.from_pretrained("facebook/wav2vec2-base")
Anton Lozhkov's avatar
Anton Lozhkov committed
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
        model_rand = Wav2Vec2ForPreTraining(config).to(torch_device).eval()

        with torch.no_grad():
            outputs_rand = model_rand(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
            )

        # compute cosine similarity
        cosine_sim_rand = torch.cosine_similarity(
            outputs_rand.projected_states, outputs_rand.projected_quantized_states, dim=-1
        )

        # retrieve cosine sim of masked features
        cosine_sim_masked_rand = cosine_sim_rand[mask_time_indices]

        # a pretrained wav2vec2 model has learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states > 0.5
        # a random wav2vec2 model has not learned to predict the quantized latent states
        # => the cosine similarity between quantized states and predicted states is very likely < 0.1
        self.assertTrue(cosine_sim_masked.mean().item() - 5 * cosine_sim_masked_rand.mean().item() > 0)

1471
    @unittest.skipIf(torch_device != "cpu", "cannot make deterministic on GPU")
Anton Lozhkov's avatar
Anton Lozhkov committed
1472
1473
    def test_loss_pretraining(self):
        model = Wav2Vec2ForPreTraining.from_pretrained(
1474
            "facebook/wav2vec2-base",
Anton Lozhkov's avatar
Anton Lozhkov committed
1475
1476
1477
1478
1479
1480
1481
1482
            attention_dropout=0.0,
            feat_proj_dropout=0.0,
            hidden_dropout=0.0,
            layerdrop=0.0,
        )
        model.to(torch_device).train()

        feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
1483
            "facebook/wav2vec2-base", return_attention_mask=True
Anton Lozhkov's avatar
Anton Lozhkov committed
1484
1485
1486
1487
1488
        )
        input_speech = self._load_datasamples(2)

        inputs_dict = feature_extractor(input_speech, return_tensors="pt", padding=True)

1489
1490
1491
1492
        batch_size = inputs_dict["input_values"].shape[0]
        feature_seq_length = int(model._get_feat_extract_output_lengths(inputs_dict["input_values"].shape[1]))

        features_shape = (batch_size, feature_seq_length)
Anton Lozhkov's avatar
Anton Lozhkov committed
1493
1494

        torch.manual_seed(0)
1495
1496
        np.random.seed(0)

Anton Lozhkov's avatar
Anton Lozhkov committed
1497
1498
1499
1500
1501
        mask_time_indices = _compute_mask_indices(
            features_shape,
            model.config.mask_time_prob,
            model.config.mask_time_length,
            min_masks=2,
1502
1503
1504
1505
1506
1507
1508
        )
        sampled_negative_indices = _sample_negative_indices(
            mask_time_indices.shape, model.config.num_negatives, mask_time_indices
        )

        mask_time_indices = torch.from_numpy(mask_time_indices).to(torch_device)
        sampled_negative_indices = torch.from_numpy(sampled_negative_indices).to(torch_device)
Anton Lozhkov's avatar
Anton Lozhkov committed
1509
1510
1511
1512
1513
1514

        with torch.no_grad():
            outputs = model(
                inputs_dict.input_values.to(torch_device),
                attention_mask=inputs_dict.attention_mask.to(torch_device),
                mask_time_indices=mask_time_indices,
1515
                sampled_negative_indices=sampled_negative_indices,
Anton Lozhkov's avatar
Anton Lozhkov committed
1516
1517
1518
1519
1520
            )

        # check diversity loss
        num_codevectors = model.config.num_codevectors_per_group * model.config.num_codevector_groups
        diversity_loss = (num_codevectors - outputs.codevector_perplexity) / num_codevectors
1521
        self.assertTrue(abs(diversity_loss.item() - 0.9538) < 1e-3)
Anton Lozhkov's avatar
Anton Lozhkov committed
1522
1523

        # check overall loss (contrastive loss + diversity loss)
1524
        expected_loss = 116.7094
Anton Lozhkov's avatar
Anton Lozhkov committed
1525
1526

        self.assertTrue(abs(outputs.loss.item() - expected_loss) < 1e-3)
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615

    def test_inference_keyword_spotting(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
        input_data = self._load_superb("ks", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [7, 6, 10, 9]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([6.1186, 11.8961, 10.2931, 6.0898], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_intent_classification(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ic").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ic")
        input_data = self._load_superb("ic", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)

        predicted_logits_action, predicted_ids_action = torch.max(outputs.logits[:, :6], dim=-1)
        predicted_logits_object, predicted_ids_object = torch.max(outputs.logits[:, 6:20], dim=-1)
        predicted_logits_location, predicted_ids_location = torch.max(outputs.logits[:, 20:24], dim=-1)

        expected_labels_action = [0, 0, 2, 3]
        expected_logits_action = torch.tensor([0.4568, 11.0848, 1.6621, 9.3841], device=torch_device)
        expected_labels_object = [3, 10, 3, 4]
        expected_logits_object = torch.tensor([1.5322, 10.7094, 5.2469, 22.1318], device=torch_device)
        expected_labels_location = [0, 0, 0, 1]
        expected_logits_location = torch.tensor([1.5335, 6.5096, 10.5704, 11.0569], device=torch_device)

        self.assertListEqual(predicted_ids_action.tolist(), expected_labels_action)
        self.assertListEqual(predicted_ids_object.tolist(), expected_labels_object)
        self.assertListEqual(predicted_ids_location.tolist(), expected_labels_location)

        self.assertTrue(torch.allclose(predicted_logits_action, expected_logits_action, atol=1e-2))
        self.assertTrue(torch.allclose(predicted_logits_object, expected_logits_object, atol=1e-2))
        self.assertTrue(torch.allclose(predicted_logits_location, expected_logits_location, atol=1e-2))

    def test_inference_speaker_identification(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-sid").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-sid")
        input_data = self._load_superb("si", 4)

        output_logits = []
        with torch.no_grad():
            for example in input_data["speech"]:
                input = processor(example, return_tensors="pt", padding=True)
                output = model(input.input_values.to(torch_device), attention_mask=None)
                output_logits.append(output.logits[0])
        output_logits = torch.stack(output_logits)
        predicted_logits, predicted_ids = torch.max(output_logits, dim=-1)

        expected_labels = [251, 1, 1, 3]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([37.5627, 71.6362, 64.2419, 31.7778], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))

    def test_inference_emotion_recognition(self):
        model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-er").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-er")
        input_data = self._load_superb("er", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        predicted_logits, predicted_ids = torch.max(outputs.logits, dim=-1)

        expected_labels = [1, 1, 2, 2]
        # s3prl logits for the same batch
        expected_logits = torch.tensor([2.1722, 3.0779, 8.0287, 6.6797], device=torch_device)

        self.assertListEqual(predicted_ids.tolist(), expected_labels)
        self.assertTrue(torch.allclose(predicted_logits, expected_logits, atol=1e-2))
1616

1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
    def test_phoneme_recognition(self):
        model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft").to(torch_device)
        processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft")

        input_speech = self._load_datasamples(4)

        inputs = processor(input_speech, return_tensors="pt", padding=True)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)

        with torch.no_grad():
            logits = model(input_values, attention_mask=attention_mask).logits

        predicted_ids = torch.argmax(logits, dim=-1)
        predicted_trans = processor.batch_decode(predicted_ids)

        EXPECTED_TRANSCRIPTIONS = [
            "ɐ m æ n s ɛ d t ə ð ə j uː n ɪ v ɚ s s ɚ aɪ ɛ ɡ z ɪ s t",
Sylvain Gugger's avatar
Sylvain Gugger committed
1636
1637
1638
1639
1640
            "s w ɛ t k ʌ v ɚ d b ɹ iː ɔ n z b ɑː d i t ɹ ɪ k l ɪ ŋ ɪ n t ə ð ə t aɪ t l oɪ n k l ɑː θ ð æ w ʌ z ð ɪ oʊ"
            " n l i ɡ ɑːɹ m ə n t h iː w ɔːɹ",
            "ð ə k aɪ t ɔ n h ɪ z tʃ ɛ s t s t ɪ l d ɹ ɪ p ɪ ŋ b l ʌ d ð ɪ eɪ k ʌ v h ɪ z oʊ v ɚ s t ɹ eɪ n d aɪ z iː"
            " v ə n ð ə s ɔːɹ ɹ ɪ ŋ ɐ ɹ iː n ɐ ɚ ɹ aʊ n d h ɪ m w ɪ ð ə θ aʊ z ə n d z ʌ v s p ɛ k t eɪ ɾ ɚ z w ɜː t ɹ"
            " ɪ v ɪ æ l ᵻ ɾ i z n ɑː t w ɜː θ θ ɪ ŋ k ɪ ŋ ɐ b aʊ t",
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
            "h ɪ z ɪ n s t ə n t v p æ n ɪ k w ʌ z f ɑː l oʊ d b aɪ ɐ s m ɔː l ʃ ɑːɹ p b l oʊ h aɪ ɔ n h ɪ z tʃ ɛ s t",
        ]
        # should correspond to =>:
        # [
        # "a man said to the universe sir i exist",
        # "sweat covered brion's body trickling into the tight loin cloth that was the only garment he wore",
        # "the cut on his chest still dripping blood the ache of his overstrained eyes even the soaring arena around him with the thousands of spectators were trivialities not worth thinking about",
        # "his instant panic was followed by a small sharp blow high on his chest",
        # ]
        self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)

1652
1653
    @require_pyctcdecode
    @require_torchaudio
1654
1655
1656
1657
    @unittest.skipIf(
        is_torch_less_than_1_9,
        reason="`torchaudio.functional.resample` needs torchaudio >= 0.9 which requires torch >= 0.9",
    )
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
    def test_wav2vec2_with_lm(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = torchaudio.functional.resample(
            torch.tensor(sample["audio"]["array"]), 48_000, 16_000
        ).numpy()

        model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
            torch_device
        )
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values.to(torch_device)).logits

        transcription = processor.batch_decode(logits.cpu().numpy()).text

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")
1679

1680
1681
    @require_pyctcdecode
    @require_torchaudio
1682
1683
1684
1685
    @unittest.skipIf(
        is_torch_less_than_1_9,
        reason="`torchaudio.functional.resample` needs torchaudio >= 0.9 which requires torch >= 0.9",
    )
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
    def test_wav2vec2_with_lm_pool(self):
        ds = load_dataset("common_voice", "es", split="test", streaming=True)
        sample = next(iter(ds))

        resampled_audio = torchaudio.functional.resample(
            torch.tensor(sample["audio"]["array"]), 48_000, 16_000
        ).numpy()

        model = Wav2Vec2ForCTC.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm").to(
            torch_device
        )
        processor = Wav2Vec2ProcessorWithLM.from_pretrained("patrickvonplaten/wav2vec2-large-xlsr-53-spanish-with-lm")

        input_values = processor(resampled_audio, return_tensors="pt").input_values

        with torch.no_grad():
            logits = model(input_values.to(torch_device)).logits

        # test user-managed pool
        with multiprocessing.get_context("fork").Pool(2) as pool:
1706
            transcription = processor.batch_decode(logits.cpu().numpy(), pool).text
1707
1708
1709
1710
1711
1712
1713

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

        # user-managed pool + num_processes should trigger a warning
        with CaptureLogger(processing_wav2vec2_with_lm.logger) as cl, multiprocessing.get_context("fork").Pool(
            2
        ) as pool:
1714
            transcription = processor.batch_decode(logits.cpu().numpy(), pool, num_processes=2).text
1715
1716
1717
1718
1719
1720
1721
1722
1723

        self.assertIn("num_process", cl.out)
        self.assertIn("it will be ignored", cl.out)

        self.assertEqual(transcription[0], "bien y qué regalo vas a abrir primero")

    @require_pyctcdecode
    @require_torchaudio
    def test_wav2vec2_with_lm_invalid_pool(self):
1724
        run_test_in_subprocess(test_case=self, target_func=_test_wav2vec2_with_lm_invalid_pool, inputs=None)
1725

1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
    def test_inference_diarization(self):
        model = Wav2Vec2ForAudioFrameClassification.from_pretrained("anton-l/wav2vec2-base-superb-sd").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("anton-l/wav2vec2-base-superb-sd")
        input_data = self._load_superb("sd", 4)
        inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)

        input_values = inputs.input_values.to(torch_device)
        attention_mask = inputs.attention_mask.to(torch_device)
        with torch.no_grad():
            outputs = model(input_values, attention_mask=attention_mask)
        # labels is a one-hot array of shape (num_frames, num_speakers)
        labels = (outputs.logits > 0).long()

        # s3prl logits for the same batch
        expected_logits = torch.tensor(
            [
                [[-5.2807, -5.1272], [-5.4059, -4.7757], [-5.2764, -4.9621], [-5.0117, -4.5851]],
                [[-1.7643, -0.5462], [-1.7369, -0.2649], [-1.5066, -0.6200], [-4.5703, -2.4863]],
                [[-0.8656, -0.4783], [-0.8899, -0.3289], [-0.9267, -0.5781], [-0.7817, -0.4619]],
                [[-4.8625, -2.5316], [-5.2339, -2.2155], [-4.9835, -2.0344], [-4.4727, -1.8421]],
            ],
            device=torch_device,
        )
        self.assertEqual(labels[0, :, 0].sum(), 555)
        self.assertEqual(labels[0, :, 1].sum(), 299)
1751
1752
        # TODO: update the tolerance after the CI moves to torch 1.10
        self.assertTrue(torch.allclose(outputs.logits[:, :4], expected_logits, atol=1e-2))
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775

    def test_inference_speaker_verification(self):
        model = Wav2Vec2ForXVector.from_pretrained("anton-l/wav2vec2-base-superb-sv").to(torch_device)
        processor = Wav2Vec2FeatureExtractor.from_pretrained("anton-l/wav2vec2-base-superb-sv")
        input_data = self._load_superb("si", 4)

        inputs = processor(input_data["speech"], return_tensors="pt", padding=True, sampling_rate=16_000)
        labels = torch.tensor([5, 1, 1, 3], device=torch_device).T

        with torch.no_grad():
            input_values = inputs.input_values.to(torch_device)
            attention_mask = inputs.attention_mask.to(torch_device)
            outputs = model(input_values, attention_mask=attention_mask, labels=labels)
        embeddings = torch.nn.functional.normalize(outputs.embeddings, dim=-1).cpu()

        cosine_sim = torch.nn.CosineSimilarity(dim=-1)
        # id10002 vs id10002
        self.assertAlmostEqual(cosine_sim(embeddings[1], embeddings[2]).numpy(), 0.9758, 3)
        # id10006 vs id10002
        self.assertAlmostEqual(cosine_sim(embeddings[0], embeddings[1]).numpy(), 0.7579, 3)
        # id10002 vs id10004
        self.assertAlmostEqual(cosine_sim(embeddings[2], embeddings[3]).numpy(), 0.7594, 3)

1776
1777
        # TODO: update the tolerance after the CI moves to torch 1.10
        self.assertAlmostEqual(outputs.loss.item(), 17.7963, 2)