test_tokenization_gpt2.py 6.8 KB
Newer Older
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
import json
18
import os
19
import unittest
20

21
from transformers import GPT2Tokenizer, GPT2TokenizerFast
Sylvain Gugger's avatar
Sylvain Gugger committed
22
from transformers.models.gpt2.tokenization_gpt2 import VOCAB_FILES_NAMES
23
from transformers.testing_utils import require_tokenizers
24

25
from .test_tokenization_common import TokenizerTesterMixin
26

27

28
@require_tokenizers
29
class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
30

31
    tokenizer_class = GPT2Tokenizer
32
    rust_tokenizer_class = GPT2TokenizerFast
Anthony MOI's avatar
Anthony MOI committed
33
    test_rust_tokenizer = True
34
    from_pretrained_kwargs = {"add_prefix_space": True}
35
    test_seq2seq = False
36
37

    def setUp(self):
Julien Chaumond's avatar
Julien Chaumond committed
38
        super().setUp()
39
40

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
62
            "<|endoftext|>",
63
        ]
64
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
65
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
66
67
        self.special_tokens_map = {"unk_token": "<unk>"}

68
69
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
70
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
thomwolf's avatar
thomwolf committed
71
            fp.write(json.dumps(vocab_tokens) + "\n")
72
        with open(self.merges_file, "w", encoding="utf-8") as fp:
73
74
            fp.write("\n".join(merges))

75
76
77
    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return GPT2Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
78

Anthony MOI's avatar
Anthony MOI committed
79
80
81
82
    def get_rust_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return GPT2TokenizerFast.from_pretrained(self.tmpdirname, **kwargs)

83
    def get_input_output_texts(self, tokenizer):
84
85
        input_text = "lower newer"
        output_text = "lower newer"
86
87
88
89
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = GPT2Tokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
thomwolf's avatar
thomwolf committed
90
        text = "lower newer"
thomwolf's avatar
thomwolf committed
91
        bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
92
        tokens = tokenizer.tokenize(text, add_prefix_space=True)
93
94
95
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + [tokenizer.unk_token]
thomwolf's avatar
thomwolf committed
96
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
97
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
Anthony MOI's avatar
Anthony MOI committed
98
99
100
101
102
103

    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_tokenizer()
Funtowicz Morgan's avatar
Funtowicz Morgan committed
104
        rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
Anthony MOI's avatar
Anthony MOI committed
105

106
        sequence = "lower newer"
Anthony MOI's avatar
Anthony MOI committed
107
108
109
110
111
112
113
114

        # Testing tokenization
        tokens = tokenizer.tokenize(sequence, add_prefix_space=True)
        rust_tokens = rust_tokenizer.tokenize(sequence)
        self.assertListEqual(tokens, rust_tokens)

        # Testing conversion to ids without special tokens
        ids = tokenizer.encode(sequence, add_special_tokens=False, add_prefix_space=True)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
115
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
Anthony MOI's avatar
Anthony MOI committed
116
117
118
119
120
121
122
123
124
125
126
127
        self.assertListEqual(ids, rust_ids)

        # Testing conversion to ids with special tokens
        rust_tokenizer = self.get_rust_tokenizer(add_prefix_space=True)
        ids = tokenizer.encode(sequence, add_prefix_space=True)
        rust_ids = rust_tokenizer.encode(sequence)
        self.assertListEqual(ids, rust_ids)

        # Testing the unknown token
        input_tokens = tokens + [rust_tokenizer.unk_token]
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
        self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
128
129
130
131
132

    def test_pretokenized_inputs(self, *args, **kwargs):
        # It's very difficult to mix/test pretokenization with byte-level
        # And get both GPT2 and Roberta to work at the same time (mostly an issue of adding a space before the string)
        pass
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

    def test_padding(self, max_length=15):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest("{} ({})".format(tokenizer.__class__.__name__, pretrained_name)):
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Simple input
                s = "This is a simple input"
                s2 = ["This is a simple input 1", "This is a simple input 2"]
                p = ("This is a simple input", "This is a pair")
                p2 = [
                    ("This is a simple input 1", "This is a simple input 2"),
                    ("This is a simple pair 1", "This is a simple pair 2"),
                ]

                # Simple input tests
                self.assertRaises(ValueError, tokenizer_r.encode, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, s, max_length=max_length, padding="max_length")

                # Simple input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    s2,
                    max_length=max_length,
                    padding="max_length",
                )

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(ValueError, tokenizer_r.encode_plus, p, max_length=max_length, padding="max_length")

                # Pair input
                self.assertRaises(
                    ValueError,
                    tokenizer_r.batch_encode_plus,
                    p2,
                    max_length=max_length,
                    padding="max_length",
                )
177
178
179
180

    # tokenizer has no padding token
    def test_padding_different_model_input_name(self):
        pass