test_tokenization_gpt2.py 2.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

Aymeric Augustin's avatar
Aymeric Augustin committed
17
import json
18
import os
19
import unittest
20

Aymeric Augustin's avatar
Aymeric Augustin committed
21
from transformers.tokenization_gpt2 import VOCAB_FILES_NAMES, GPT2Tokenizer
22

23
from .test_tokenization_common import TokenizerTesterMixin
24

25

26
class GPT2TokenizationTest(TokenizerTesterMixin, unittest.TestCase):
27

28
29
30
31
32
33
    tokenizer_class = GPT2Tokenizer

    def setUp(self):
        super(GPT2TokenizationTest, self).setUp()

        # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
        vocab = [
            "l",
            "o",
            "w",
            "e",
            "r",
            "s",
            "t",
            "i",
            "d",
            "n",
            "\u0120",
            "\u0120l",
            "\u0120n",
            "\u0120lo",
            "\u0120low",
            "er",
            "\u0120lowest",
            "\u0120newer",
            "\u0120wider",
            "<unk>",
        ]
56
        vocab_tokens = dict(zip(vocab, range(len(vocab))))
57
        merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
58
59
        self.special_tokens_map = {"unk_token": "<unk>"}

60
61
        self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
        self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
62
        with open(self.vocab_file, "w", encoding="utf-8") as fp:
thomwolf's avatar
thomwolf committed
63
            fp.write(json.dumps(vocab_tokens) + "\n")
64
        with open(self.merges_file, "w", encoding="utf-8") as fp:
65
66
            fp.write("\n".join(merges))

67
68
69
    def get_tokenizer(self, **kwargs):
        kwargs.update(self.special_tokens_map)
        return GPT2Tokenizer.from_pretrained(self.tmpdirname, **kwargs)
70
71

    def get_input_output_texts(self):
72
73
        input_text = "lower newer"
        output_text = "lower newer"
74
75
76
77
        return input_text, output_text

    def test_full_tokenizer(self):
        tokenizer = GPT2Tokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
thomwolf's avatar
thomwolf committed
78
        text = "lower newer"
thomwolf's avatar
thomwolf committed
79
        bpe_tokens = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
80
        tokens = tokenizer.tokenize(text, add_prefix_space=True)
81
82
83
        self.assertListEqual(tokens, bpe_tokens)

        input_tokens = tokens + [tokenizer.unk_token]
thomwolf's avatar
thomwolf committed
84
        input_bpe_tokens = [14, 15, 10, 9, 3, 2, 15, 19]
85
        self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)