run_qa.py 30.2 KB
Newer Older
1
#!/usr/bin/env python
Sylvain Gugger's avatar
Sylvain Gugger committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
17
Fine-tuning the library models for question answering using a slightly adapted version of the 馃 Trainer.
Sylvain Gugger's avatar
Sylvain Gugger committed
18
19
20
21
22
23
24
25
26
"""
# You can also adapt this script on your own question answering task. Pointers for this are left as comments.

import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional

27
import datasets
Sylvain Gugger's avatar
Sylvain Gugger committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from datasets import load_dataset, load_metric

import transformers
from trainer_qa import QuestionAnsweringTrainer
from transformers import (
    AutoConfig,
    AutoModelForQuestionAnswering,
    AutoTokenizer,
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    PreTrainedTokenizerFast,
    TrainingArguments,
    default_data_collator,
    set_seed,
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Sylvain Gugger's avatar
Sylvain Gugger committed
47
48
49
from utils_qa import postprocess_qa_predictions


50
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Lysandre Debut's avatar
Lysandre Debut committed
51
check_min_version("4.20.0.dev0")
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt")
54

Sylvain Gugger's avatar
Sylvain Gugger committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
logger = logging.getLogger(__name__)


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """

    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None,
        metadata={"help": "Path to directory to store the pretrained models downloaded from huggingface.co"},
    )
77
78
79
80
81
82
83
84
85
86
87
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
    )
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
107
108
109
110
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input test data file to evaluate the perplexity on (a text file)."},
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    preprocessing_num_workers: Optional[int] = field(
        default=None,
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    max_seq_length: int = field(
        default=384,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch (which can "
            "be faster on GPU but will be slower on TPU)."
        },
    )
133
134
135
136
137
138
139
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
140
    max_eval_samples: Optional[int] = field(
141
142
        default=None,
        metadata={
143
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
144
145
146
            "value if set."
        },
    )
147
    max_predict_samples: Optional[int] = field(
148
149
        default=None,
        metadata={
150
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
151
152
153
            "value if set."
        },
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    version_2_with_negative: bool = field(
        default=False, metadata={"help": "If true, some of the examples do not have an answer."}
    )
    null_score_diff_threshold: float = field(
        default=0.0,
        metadata={
            "help": "The threshold used to select the null answer: if the best answer has a score that is less than "
            "the score of the null answer minus this threshold, the null answer is selected for this example. "
            "Only useful when `version_2_with_negative=True`."
        },
    )
    doc_stride: int = field(
        default=128,
        metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."},
    )
    n_best_size: int = field(
        default=20,
        metadata={"help": "The total number of n-best predictions to generate when looking for an answer."},
    )
    max_answer_length: int = field(
        default=30,
        metadata={
            "help": "The maximum length of an answer that can be generated. This is needed because the start "
            "and end predictions are not conditioned on one another."
        },
    )

    def __post_init__(self):
182
183
184
185
186
187
188
        if (
            self.dataset_name is None
            and self.train_file is None
            and self.validation_file is None
            and self.test_file is None
        ):
            raise ValueError("Need either a dataset name or a training/validation file/test_file.")
Sylvain Gugger's avatar
Sylvain Gugger committed
189
190
191
192
193
194
195
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
196
197
198
            if self.test_file is not None:
                extension = self.test_file.split(".")[-1]
                assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
Sylvain Gugger's avatar
Sylvain Gugger committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
216
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
Sylvain Gugger's avatar
Sylvain Gugger committed
217
        datefmt="%m/%d/%Y %H:%M:%S",
218
        handlers=[logging.StreamHandler(sys.stdout)],
Sylvain Gugger's avatar
Sylvain Gugger committed
219
    )
220
221
222
223
224
225
226

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
230
231
232

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
233
    logger.info(f"Training/evaluation parameters {training_args}")
Sylvain Gugger's avatar
Sylvain Gugger committed
234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

Sylvain Gugger's avatar
Sylvain Gugger committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
264
        raw_datasets = load_dataset(
265
266
267
268
            data_args.dataset_name,
            data_args.dataset_config_name,
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
269
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
270
271
272
273
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
274
275
            extension = data_args.train_file.split(".")[-1]

Sylvain Gugger's avatar
Sylvain Gugger committed
276
277
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
278
            extension = data_args.validation_file.split(".")[-1]
279
280
281
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
282
283
284
285
286
287
288
        raw_datasets = load_dataset(
            extension,
            data_files=data_files,
            field="data",
            cache_dir=model_args.cache_dir,
            use_auth_token=True if model_args.use_auth_token else None,
        )
Sylvain Gugger's avatar
Sylvain Gugger committed
289
290
291
292
293
294
295
296
297
298
299
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
300
301
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
302
303
304
305
306
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=True,
307
308
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
309
310
311
312
313
314
    )
    model = AutoModelForQuestionAnswering.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
315
316
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
317
318
319
320
321
322
    )

    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
323
            "at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
Sylvain Gugger's avatar
Sylvain Gugger committed
324
325
326
327
328
329
            "requirement"
        )

    # Preprocessing the datasets.
    # Preprocessing is slighlty different for training and evaluation.
    if training_args.do_train:
330
        column_names = raw_datasets["train"].column_names
331
    elif training_args.do_eval:
332
        column_names = raw_datasets["validation"].column_names
333
    else:
334
        column_names = raw_datasets["test"].column_names
Sylvain Gugger's avatar
Sylvain Gugger committed
335
336
337
338
339
340
341
    question_column_name = "question" if "question" in column_names else column_names[0]
    context_column_name = "context" if "context" in column_names else column_names[1]
    answer_column_name = "answers" if "answers" in column_names else column_names[2]

    # Padding side determines if we do (question|context) or (context|question).
    pad_on_right = tokenizer.padding_side == "right"

342
    if data_args.max_seq_length > tokenizer.model_max_length:
343
        logger.warning(
344
345
346
347
348
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

Sylvain Gugger's avatar
Sylvain Gugger committed
349
350
    # Training preprocessing
    def prepare_train_features(examples):
351
352
353
354
355
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
356
357
358
359
360
361
362
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
363
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")
        # The offset mappings will give us a map from token to character position in the original context. This will
        # help us compute the start_positions and end_positions.
        offset_mapping = tokenized_examples.pop("offset_mapping")

        # Let's label those examples!
        tokenized_examples["start_positions"] = []
        tokenized_examples["end_positions"] = []

        for i, offsets in enumerate(offset_mapping):
            # We will label impossible answers with the index of the CLS token.
            input_ids = tokenized_examples["input_ids"][i]
            cls_index = input_ids.index(tokenizer.cls_token_id)

            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            answers = examples[answer_column_name][sample_index]
            # If no answers are given, set the cls_index as answer.
            if len(answers["answer_start"]) == 0:
                tokenized_examples["start_positions"].append(cls_index)
                tokenized_examples["end_positions"].append(cls_index)
            else:
                # Start/end character index of the answer in the text.
                start_char = answers["answer_start"][0]
                end_char = start_char + len(answers["text"][0])

                # Start token index of the current span in the text.
                token_start_index = 0
                while sequence_ids[token_start_index] != (1 if pad_on_right else 0):
                    token_start_index += 1

                # End token index of the current span in the text.
                token_end_index = len(input_ids) - 1
                while sequence_ids[token_end_index] != (1 if pad_on_right else 0):
                    token_end_index -= 1

                # Detect if the answer is out of the span (in which case this feature is labeled with the CLS index).
                if not (offsets[token_start_index][0] <= start_char and offsets[token_end_index][1] >= end_char):
                    tokenized_examples["start_positions"].append(cls_index)
                    tokenized_examples["end_positions"].append(cls_index)
                else:
                    # Otherwise move the token_start_index and token_end_index to the two ends of the answer.
                    # Note: we could go after the last offset if the answer is the last word (edge case).
                    while token_start_index < len(offsets) and offsets[token_start_index][0] <= start_char:
                        token_start_index += 1
                    tokenized_examples["start_positions"].append(token_start_index - 1)
                    while offsets[token_end_index][1] >= end_char:
                        token_end_index -= 1
                    tokenized_examples["end_positions"].append(token_end_index + 1)

        return tokenized_examples

    if training_args.do_train:
428
        if "train" not in raw_datasets:
429
            raise ValueError("--do_train requires a train dataset")
430
        train_dataset = raw_datasets["train"]
431
        if data_args.max_train_samples is not None:
Akul Agrawal's avatar
Akul Agrawal committed
432
            # We will select sample from whole data if argument is specified
433
434
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
435
        # Create train feature from dataset
436
437
438
439
440
441
442
443
444
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                prepare_train_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
445
446
        if data_args.max_train_samples is not None:
            # Number of samples might increase during Feature Creation, We select only specified max samples
447
448
            max_train_samples = min(len(train_dataset), data_args.max_train_samples)
            train_dataset = train_dataset.select(range(max_train_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
449
450
451

    # Validation preprocessing
    def prepare_validation_features(examples):
452
453
454
455
456
        # Some of the questions have lots of whitespace on the left, which is not useful and will make the
        # truncation of the context fail (the tokenized question will take a lots of space). So we remove that
        # left whitespace
        examples[question_column_name] = [q.lstrip() for q in examples[question_column_name]]

Sylvain Gugger's avatar
Sylvain Gugger committed
457
458
459
460
461
462
463
        # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
        # in one example possible giving several features when a context is long, each of those features having a
        # context that overlaps a bit the context of the previous feature.
        tokenized_examples = tokenizer(
            examples[question_column_name if pad_on_right else context_column_name],
            examples[context_column_name if pad_on_right else question_column_name],
            truncation="only_second" if pad_on_right else "only_first",
464
            max_length=max_seq_length,
Sylvain Gugger's avatar
Sylvain Gugger committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
            stride=data_args.doc_stride,
            return_overflowing_tokens=True,
            return_offsets_mapping=True,
            padding="max_length" if data_args.pad_to_max_length else False,
        )

        # Since one example might give us several features if it has a long context, we need a map from a feature to
        # its corresponding example. This key gives us just that.
        sample_mapping = tokenized_examples.pop("overflow_to_sample_mapping")

        # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
        # corresponding example_id and we will store the offset mappings.
        tokenized_examples["example_id"] = []

        for i in range(len(tokenized_examples["input_ids"])):
            # Grab the sequence corresponding to that example (to know what is the context and what is the question).
            sequence_ids = tokenized_examples.sequence_ids(i)
            context_index = 1 if pad_on_right else 0

            # One example can give several spans, this is the index of the example containing this span of text.
            sample_index = sample_mapping[i]
            tokenized_examples["example_id"].append(examples["id"][sample_index])

            # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
            # position is part of the context or not.
            tokenized_examples["offset_mapping"][i] = [
                (o if sequence_ids[k] == context_index else None)
                for k, o in enumerate(tokenized_examples["offset_mapping"][i])
            ]

        return tokenized_examples

    if training_args.do_eval:
498
        if "validation" not in raw_datasets:
499
            raise ValueError("--do_eval requires a validation dataset")
500
        eval_examples = raw_datasets["validation"]
501
        if data_args.max_eval_samples is not None:
502
            # We will select sample from whole data
503
504
            max_eval_samples = min(len(eval_examples), data_args.max_eval_samples)
            eval_examples = eval_examples.select(range(max_eval_samples))
505
        # Validation Feature Creation
506
507
508
509
510
511
512
513
514
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
515
        if data_args.max_eval_samples is not None:
516
            # During Feature creation dataset samples might increase, we will select required samples again
517
518
            max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
            eval_dataset = eval_dataset.select(range(max_eval_samples))
Sylvain Gugger's avatar
Sylvain Gugger committed
519

520
    if training_args.do_predict:
521
        if "test" not in raw_datasets:
522
            raise ValueError("--do_predict requires a test dataset")
523
        predict_examples = raw_datasets["test"]
524
        if data_args.max_predict_samples is not None:
525
            # We will select sample from whole data
526
527
            predict_examples = predict_examples.select(range(data_args.max_predict_samples))
        # Predict Feature Creation
528
529
530
531
532
533
534
535
536
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_examples.map(
                prepare_validation_features,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
537
        if data_args.max_predict_samples is not None:
538
            # During Feature creation dataset samples might increase, we will select required samples again
539
540
            max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
            predict_dataset = predict_dataset.select(range(max_predict_samples))
541

Sylvain Gugger's avatar
Sylvain Gugger committed
542
543
544
    # Data collator
    # We have already padded to max length if the corresponding flag is True, otherwise we need to pad in the data
    # collator.
545
546
547
548
549
    data_collator = (
        default_data_collator
        if data_args.pad_to_max_length
        else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
550
551

    # Post-processing:
552
    def post_processing_function(examples, features, predictions, stage="eval"):
Sylvain Gugger's avatar
Sylvain Gugger committed
553
554
555
556
557
558
559
560
561
562
        # Post-processing: we match the start logits and end logits to answers in the original context.
        predictions = postprocess_qa_predictions(
            examples=examples,
            features=features,
            predictions=predictions,
            version_2_with_negative=data_args.version_2_with_negative,
            n_best_size=data_args.n_best_size,
            max_answer_length=data_args.max_answer_length,
            null_score_diff_threshold=data_args.null_score_diff_threshold,
            output_dir=training_args.output_dir,
563
            log_level=log_level,
564
            prefix=stage,
Sylvain Gugger's avatar
Sylvain Gugger committed
565
566
567
568
569
570
571
572
        )
        # Format the result to the format the metric expects.
        if data_args.version_2_with_negative:
            formatted_predictions = [
                {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
            ]
        else:
            formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
573
574

        references = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples]
Sylvain Gugger's avatar
Sylvain Gugger committed
575
576
        return EvalPrediction(predictions=formatted_predictions, label_ids=references)

577
    metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad")
Sylvain Gugger's avatar
Sylvain Gugger committed
578
579
580
581
582
583
584
585
586

    def compute_metrics(p: EvalPrediction):
        return metric.compute(predictions=p.predictions, references=p.label_ids)

    # Initialize our Trainer
    trainer = QuestionAnsweringTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
587
        eval_dataset=eval_dataset if training_args.do_eval else None,
588
        eval_examples=eval_examples if training_args.do_eval else None,
Sylvain Gugger's avatar
Sylvain Gugger committed
589
590
591
592
593
594
595
596
        tokenizer=tokenizer,
        data_collator=data_collator,
        post_process_function=post_processing_function,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
597
598
599
600
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
601
602
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
Sylvain Gugger's avatar
Sylvain Gugger committed
603
604
        trainer.save_model()  # Saves the tokenizer too for easy upload

605
        metrics = train_result.metrics
606
607
608
609
610
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

611
612
613
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
614

Sylvain Gugger's avatar
Sylvain Gugger committed
615
616
617
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
618
        metrics = trainer.evaluate()
Sylvain Gugger's avatar
Sylvain Gugger committed
619

620
621
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
Sylvain Gugger's avatar
Sylvain Gugger committed
622

623
624
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
Sylvain Gugger's avatar
Sylvain Gugger committed
625

626
627
628
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
629
        results = trainer.predict(predict_dataset, predict_examples)
630
631
        metrics = results.metrics

632
633
634
635
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
636

637
638
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
639

640
641
642
643
644
645
646
647
    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "question-answering"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name
Sylvain Gugger's avatar
Sylvain Gugger committed
648

649
    if training_args.push_to_hub:
Sylvain Gugger's avatar
Sylvain Gugger committed
650
        trainer.push_to_hub(**kwargs)
651
652
    else:
        trainer.create_model_card(**kwargs)
Sylvain Gugger's avatar
Sylvain Gugger committed
653

Sylvain Gugger's avatar
Sylvain Gugger committed
654
655
656
657
658
659
660
661

def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


if __name__ == "__main__":
    main()