test_onnx_v2.py 22.6 KB
Newer Older
1
import os
2
import unittest
3
4
5
6
7
from pathlib import Path
from tempfile import NamedTemporaryFile
from unittest import TestCase
from unittest.mock import patch

lewtun's avatar
lewtun committed
8
import pytest
9
from parameterized import parameterized
10

11
from transformers import AutoConfig, PreTrainedTokenizerBase, is_tf_available, is_torch_available
12
13
14
from transformers.onnx import (
    EXTERNAL_DATA_FORMAT_SIZE_LIMIT,
    OnnxConfig,
lewtun's avatar
lewtun committed
15
    OnnxConfigWithPast,
16
17
18
19
    ParameterFormat,
    export,
    validate_model_outputs,
)
20
21
22
23
24
from transformers.onnx.utils import (
    compute_effective_axis_dimension,
    compute_serialized_parameters_size,
    get_preprocessor,
)
25
from transformers.testing_utils import require_onnx, require_rjieba, require_tf, require_torch, require_vision, slow
26
27


28
if is_torch_available() or is_tf_available():
29
30
    from transformers.onnx.features import FeaturesManager

31
32
33
34
35
if is_torch_available():
    import torch

    from transformers.models.deberta import modeling_deberta

36
37
38
39
40
41
42

@require_onnx
class OnnxUtilsTestCaseV2(TestCase):
    """
    Cover all the utilities involved to export ONNX models
    """

43
44
45
46
47
48
49
50
51
    @require_torch
    @patch("transformers.onnx.convert.is_torch_onnx_dict_inputs_support_available", return_value=False)
    def test_ensure_pytorch_version_ge_1_8_0(self, mock_is_torch_onnx_dict_inputs_support_available):
        """
        Ensure we raise an Exception if the pytorch version is unsupported (< 1.8.0)
        """
        self.assertRaises(AssertionError, export, None, None, None, None, None)
        mock_is_torch_onnx_dict_inputs_support_available.assert_called()

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    def test_compute_effective_axis_dimension(self):
        """
        When exporting ONNX model with dynamic axis (batch or sequence) we set batch_size and/or sequence_length = -1.
        We cannot generate an effective tensor with axis dim == -1, so we trick by using some "fixed" values
        (> 1 to avoid ONNX squeezing the axis).

        This test ensure we are correctly replacing generated batch / sequence tensor with axis > 1
        """

        # Dynamic axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(-1, fixed_dimension=2, num_token_to_add=0), 2)

        # Static axis (batch, no token added by the tokenizer)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=2, num_token_to_add=0), 2)

        # Dynamic axis (sequence, token added by the tokenizer 2 (no pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=2), 6)

        # Dynamic axis (sequence, token added by the tokenizer 3 (pair))
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)
        self.assertEqual(compute_effective_axis_dimension(0, fixed_dimension=8, num_token_to_add=3), 5)

    def test_compute_parameters_serialized_size(self):
        """
        This test ensures we compute a "correct" approximation of the underlying storage requirement (size) for all the
        parameters for the specified parameter's dtype.
        """
        self.assertEqual(compute_serialized_parameters_size(2, ParameterFormat.Float), 2 * ParameterFormat.Float.size)

    def test_flatten_output_collection_property(self):
        """
        This test ensures we correctly flatten nested collection such as the one we use when returning past_keys.
        past_keys = Tuple[Tuple]

        ONNX exporter will export nested collections as ${collection_name}.${level_idx_0}.${level_idx_1}...${idx_n}
        """
        self.assertEqual(
90
            OnnxConfig.flatten_output_collection_property("past_key", [[0], [1], [2]]),
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            {
                "past_key.0": 0,
                "past_key.1": 1,
                "past_key.2": 2,
            },
        )


class OnnxConfigTestCaseV2(TestCase):
    """
    Cover the test for models default.

    Default means no specific features is being enabled on the model.
    """

    @patch.multiple(OnnxConfig, __abstractmethods__=set())
    def test_use_external_data_format(self):
        """
        External data format is required only if the serialized size of the parameters if bigger than 2Gb
        """
        TWO_GB_LIMIT = EXTERNAL_DATA_FORMAT_SIZE_LIMIT

        # No parameters
        self.assertFalse(OnnxConfig.use_external_data_format(0))

        # Some parameters
        self.assertFalse(OnnxConfig.use_external_data_format(1))

        # Almost 2Gb parameters
        self.assertFalse(OnnxConfig.use_external_data_format((TWO_GB_LIMIT - 1) // ParameterFormat.Float.size))

        # Exactly 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format(TWO_GB_LIMIT))

        # More than 2Gb parameters
        self.assertTrue(OnnxConfig.use_external_data_format((TWO_GB_LIMIT + 1) // ParameterFormat.Float.size))


class OnnxConfigWithPastTestCaseV2(TestCase):
    """
    Cover the tests for model which have use_cache feature (i.e. "with_past" for ONNX)
    """

134
135
136
137
138
139
    SUPPORTED_WITH_PAST_CONFIGS = {}
    # SUPPORTED_WITH_PAST_CONFIGS = {
    #     ("BART", BartConfig),
    #     ("GPT2", GPT2Config),
    #     # ("T5", T5Config)
    # }
140
141
142
143
144
145
146
147
148

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_use_past(self):
        """
        Ensure the use_past variable is correctly being set
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                self.assertFalse(
149
150
                    OnnxConfigWithPast.from_model_config(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should not use_past",
151
152
153
                )

                self.assertTrue(
154
155
                    OnnxConfigWithPast.with_past(config()).use_past,
                    "OnnxConfigWithPast.from_model_config() should use_past",
156
157
158
159
160
161
162
163
164
165
                )

    @patch.multiple(OnnxConfigWithPast, __abstractmethods__=set())
    def test_values_override(self):
        """
        Ensure the use_past variable correctly set the `use_cache` value in model's configuration
        """
        for name, config in OnnxConfigWithPastTestCaseV2.SUPPORTED_WITH_PAST_CONFIGS:
            with self.subTest(name):
                # without past
166
                onnx_config_default = OnnxConfigWithPast.from_model_config(config())
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertFalse(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )

                # with past
                onnx_config_default = OnnxConfigWithPast.with_past(config())
                self.assertIsNotNone(onnx_config_default.values_override, "values_override should not be None")
                self.assertIn("use_cache", onnx_config_default.values_override, "use_cache should be present")
                self.assertTrue(
                    onnx_config_default.values_override["use_cache"], "use_cache should be False if not using past"
                )


182
PYTORCH_EXPORT_MODELS = {
183
184
185
186
    ("albert", "hf-internal-testing/tiny-random-AlbertModel"),
    ("bert", "hf-internal-testing/tiny-random-BertModel"),
    ("beit", "microsoft/beit-base-patch16-224"),
    ("big-bird", "hf-internal-testing/tiny-random-BigBirdModel"),
187
    ("camembert", "camembert-base"),
188
189
190
191
192
193
194
195
    ("clip", "hf-internal-testing/tiny-random-CLIPModel"),
    ("convbert", "hf-internal-testing/tiny-random-ConvBertModel"),
    ("codegen", "hf-internal-testing/tiny-random-CodeGenModel"),
    ("data2vec-text", "hf-internal-testing/tiny-random-Data2VecTextModel"),
    ("data2vec-vision", "facebook/data2vec-vision-base"),
    ("deberta", "hf-internal-testing/tiny-random-DebertaModel"),
    ("deberta-v2", "hf-internal-testing/tiny-random-DebertaV2Model"),
    ("deit", "facebook/deit-small-patch16-224"),
196
    ("convnext", "facebook/convnext-tiny-224"),
regisss's avatar
regisss committed
197
    ("detr", "facebook/detr-resnet-50"),
198
199
200
201
    ("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
    ("electra", "hf-internal-testing/tiny-random-ElectraModel"),
    ("groupvit", "nvidia/groupvit-gcc-yfcc"),
    ("ibert", "kssteven/ibert-roberta-base"),
202
    ("imagegpt", "openai/imagegpt-small"),
203
204
205
206
207
    ("levit", "facebook/levit-128S"),
    ("layoutlm", "hf-internal-testing/tiny-random-LayoutLMModel"),
    ("layoutlmv3", "microsoft/layoutlmv3-base"),
    ("longformer", "allenai/longformer-base-4096"),
    ("mobilebert", "hf-internal-testing/tiny-random-MobileBertModel"),
208
    ("mobilenet_v1", "google/mobilenet_v1_0.75_192"),
209
    ("mobilenet_v2", "google/mobilenet_v2_0.35_96"),
210
    ("mobilevit", "apple/mobilevit-small"),
211
    ("owlvit", "google/owlvit-base-patch32"),
212
213
    ("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("masked-lm", "sequence-classification")),
    ("perceiver", "hf-internal-testing/tiny-random-PerceiverModel", ("image-classification",)),
214
    ("poolformer", "sail/poolformer_s12"),
Erin's avatar
Erin committed
215
    ("rembert", "google/rembert"),
216
217
218
    ("resnet", "microsoft/resnet-50"),
    ("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
    ("roformer", "hf-internal-testing/tiny-random-RoFormerModel"),
219
    ("segformer", "nvidia/segformer-b0-finetuned-ade-512-512"),
220
    ("squeezebert", "hf-internal-testing/tiny-random-SqueezeBertModel"),
221
    ("swin", "microsoft/swin-tiny-patch4-window7-224"),
222
223
    ("vit", "google/vit-base-patch16-224"),
    ("yolos", "hustvl/yolos-tiny"),
224
    ("whisper", "openai/whisper-tiny.en"),
225
226
    ("xlm", "hf-internal-testing/tiny-random-XLMModel"),
    ("xlm-roberta", "hf-internal-testing/tiny-random-XLMRobertaXLModel"),
227
228
}

229
230
231
232
PYTORCH_EXPORT_ENCODER_DECODER_MODELS = {
    ("vision-encoder-decoder", "nlpconnect/vit-gpt2-image-captioning"),
}

233
PYTORCH_EXPORT_WITH_PAST_MODELS = {
234
235
236
    ("bloom", "hf-internal-testing/tiny-random-BloomModel"),
    ("gpt2", "hf-internal-testing/tiny-random-GPT2Model"),
    ("gpt-neo", "hf-internal-testing/tiny-random-GPTNeoModel"),
237
238
239
}

PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {
240
241
242
243
244
    ("bart", "hf-internal-testing/tiny-random-BartModel"),
    ("bigbird-pegasus", "hf-internal-testing/tiny-random-BigBirdPegasusModel"),
    ("blenderbot-small", "facebook/blenderbot_small-90M"),
    ("blenderbot", "hf-internal-testing/tiny-random-BlenderbotModel"),
    ("longt5", "hf-internal-testing/tiny-random-LongT5Model"),
245
    ("marian", "Helsinki-NLP/opus-mt-en-de"),
246
    ("mbart", "sshleifer/tiny-mbart"),
247
    ("mt5", "google/mt5-base"),
248
249
    ("m2m-100", "hf-internal-testing/tiny-random-M2M100Model"),
    ("t5", "hf-internal-testing/tiny-random-T5Model"),
250
251
}

252
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_MODELS` once TensorFlow has parity with the PyTorch model implementations.
253
254
TENSORFLOW_EXPORT_DEFAULT_MODELS = {
    ("albert", "hf-internal-testing/tiny-albert"),
255
    ("bert", "hf-internal-testing/tiny-random-BertModel"),
256
    ("camembert", "camembert-base"),
257
258
    ("distilbert", "hf-internal-testing/tiny-random-DistilBertModel"),
    ("roberta", "hf-internal-testing/tiny-random-RobertaModel"),
259
260
}

261
262
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_WITH_PAST_MODELS = {}
263

264
265
# TODO(lewtun): Include the same model types in `PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS` once TensorFlow has parity with the PyTorch model implementations.
TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS = {}
266

267
268
269

def _get_models_to_test(export_models_list):
    models_to_test = []
270
    if is_torch_available() or is_tf_available():
271
272
273
274
275
276
        for name, model, *features in export_models_list:
            if features:
                feature_config_mapping = {
                    feature: FeaturesManager.get_config(name, feature) for _ in features for feature in _
                }
            else:
277
278
279
280
281
282
                # pre-process the model names
                model_type = name.replace("_", "-")
                model_name = getattr(model, "name", "")
                feature_config_mapping = FeaturesManager.get_supported_features_for_model_type(
                    model_type, model_name=model_name
                )
283
284

            for feature, onnx_config_class_constructor in feature_config_mapping.items():
285
286
287
288
289
                models_to_test.append((f"{name}_{feature}", name, model, feature, onnx_config_class_constructor))
        return sorted(models_to_test)
    else:
        # Returning some dummy test that should not be ever called because of the @require_torch / @require_tf
        # decorators.
290
291
        # The reason for not returning an empty list is because parameterized.expand complains when it's empty.
        return [("dummy", "dummy", "dummy", "dummy", OnnxConfig.from_model_config)]
292
293
294
295
296
297
298


class OnnxExportTestCaseV2(TestCase):
    """
    Integration tests ensuring supported models are correctly exported
    """

299
300
301
    def _onnx_export(
        self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu", framework="pt"
    ):
302
303
        from transformers.onnx import export

304
        model_class = FeaturesManager.get_model_class_for_feature(feature, framework=framework)
lewtun's avatar
lewtun committed
305
        config = AutoConfig.from_pretrained(model_name)
306
        model = model_class.from_config(config)
Yih-Dar's avatar
Yih-Dar committed
307
308
309
310
311
312

        # Dynamic axes aren't supported for YOLO-like models. This means they cannot be exported to ONNX on CUDA devices.
        # See: https://github.com/ultralytics/yolov5/pull/8378
        if model.__class__.__name__.startswith("Yolos") and device != "cpu":
            return

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
        # ONNX inference fails with the following name, feature, framework parameterizations
        # See: https://github.com/huggingface/transformers/issues/19357
        if (name, feature, framework) in {
            ("deberta-v2", "question-answering", "pt"),
            ("deberta-v2", "multiple-choice", "pt"),
            ("roformer", "multiple-choice", "pt"),
            ("groupvit", "default", "pt"),
            ("perceiver", "masked-lm", "pt"),
            ("perceiver", "sequence-classification", "pt"),
            ("perceiver", "image-classification", "pt"),
            ("bert", "multiple-choice", "tf"),
            ("camembert", "multiple-choice", "tf"),
            ("roberta", "multiple-choice", "tf"),
        }:
            return

329
        onnx_config = onnx_config_class_constructor(model.config)
330

lewtun's avatar
lewtun committed
331
        if is_torch_available():
332
            from transformers.utils import torch_version
lewtun's avatar
lewtun committed
333
334
335

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
Sylvain Gugger's avatar
Sylvain Gugger committed
336
337
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
lewtun's avatar
lewtun committed
338
339
                )

340
341
342
343
344
        preprocessor = get_preprocessor(model_name)

        # Useful for causal lm models that do not use pad tokens.
        if isinstance(preprocessor, PreTrainedTokenizerBase) and not getattr(config, "pad_token_id", None):
            config.pad_token_id = preprocessor.eos_token_id
lewtun's avatar
lewtun committed
345

346
347
348
        with NamedTemporaryFile("w") as output:
            try:
                onnx_inputs, onnx_outputs = export(
349
                    preprocessor, model, onnx_config, onnx_config.default_onnx_opset, Path(output.name), device=device
350
351
352
                )
                validate_model_outputs(
                    onnx_config,
lewtun's avatar
lewtun committed
353
                    preprocessor,
354
355
356
357
358
359
360
                    model,
                    Path(output.name),
                    onnx_outputs,
                    onnx_config.atol_for_validation,
                )
            except (RuntimeError, ValueError) as e:
                self.fail(f"{name}, {feature} -> {e}")
361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def _onnx_export_encoder_decoder_models(
        self, test_name, name, model_name, feature, onnx_config_class_constructor, device="cpu"
    ):
        from transformers import AutoFeatureExtractor, AutoTokenizer
        from transformers.onnx import export

        model_class = FeaturesManager.get_model_class_for_feature(feature)
        config = AutoConfig.from_pretrained(model_name)
        model = model_class.from_config(config)

        onnx_config = onnx_config_class_constructor(model.config)

        if is_torch_available():
            from transformers.utils import torch_version

            if torch_version < onnx_config.torch_onnx_minimum_version:
                pytest.skip(
                    "Skipping due to incompatible PyTorch version. Minimum required is"
                    f" {onnx_config.torch_onnx_minimum_version}, got: {torch_version}"
                )

        encoder_model = model.get_encoder()
        decoder_model = model.get_decoder()

        encoder_onnx_config = onnx_config.get_encoder_config(encoder_model.config)
        decoder_onnx_config = onnx_config.get_decoder_config(encoder_model.config, decoder_model.config, feature)

        preprocessor = AutoFeatureExtractor.from_pretrained(model_name)

        onnx_opset = max(encoder_onnx_config.default_onnx_opset, decoder_onnx_config.default_onnx_opset)

        with NamedTemporaryFile("w") as encoder_output:
            onnx_inputs, onnx_outputs = export(
                preprocessor, encoder_model, encoder_onnx_config, onnx_opset, Path(encoder_output.name), device=device
            )
            validate_model_outputs(
                encoder_onnx_config,
                preprocessor,
                encoder_model,
                Path(encoder_output.name),
                onnx_outputs,
                encoder_onnx_config.atol_for_validation,
            )

        preprocessor = AutoTokenizer.from_pretrained(model_name)

        with NamedTemporaryFile("w") as decoder_output:
409
            _, onnx_outputs = export(
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
                preprocessor,
                decoder_model,
                decoder_onnx_config,
                onnx_config.default_onnx_opset,
                Path(decoder_output.name),
                device=device,
            )
            validate_model_outputs(
                decoder_onnx_config,
                preprocessor,
                decoder_model,
                Path(decoder_output.name),
                onnx_outputs,
                decoder_onnx_config.atol_for_validation,
            )

426
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
427
428
    @slow
    @require_torch
lewtun's avatar
lewtun committed
429
    @require_vision
430
    @require_rjieba
431
    def test_pytorch_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
432
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
433

434
435
436
437
438
439
440
441
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_on_cuda(self, test_name, name, model_name, feature, onnx_config_class_constructor):
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda")

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_encoder_decoder_models(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
        self._onnx_export_encoder_decoder_models(test_name, name, model_name, feature, onnx_config_class_constructor)

    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_ENCODER_DECODER_MODELS))
    @slow
    @require_torch
    @require_vision
    @require_rjieba
    def test_pytorch_export_encoder_decoder_models_on_cuda(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
        self._onnx_export_encoder_decoder_models(
            test_name, name, model_name, feature, onnx_config_class_constructor, device="cuda"
        )

464
465
466
467
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_WITH_PAST_MODELS))
    @slow
    @require_torch
    def test_pytorch_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
468
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)
469

470
471
472
473
474
475
    @parameterized.expand(_get_models_to_test(PYTORCH_EXPORT_SEQ2SEQ_WITH_PAST_MODELS))
    @slow
    @require_torch
    def test_pytorch_export_seq2seq_with_past(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
476
477
478
479
480
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor)

    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_DEFAULT_MODELS))
    @slow
    @require_tf
lewtun's avatar
lewtun committed
481
    @require_vision
482
    def test_tensorflow_export(self, test_name, name, model_name, feature, onnx_config_class_constructor):
483
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
484

485
    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_WITH_PAST_MODELS), skip_on_empty=True)
486
487
488
    @slow
    @require_tf
    def test_tensorflow_export_with_past(self, test_name, name, model_name, feature, onnx_config_class_constructor):
489
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
490

491
    @parameterized.expand(_get_models_to_test(TENSORFLOW_EXPORT_SEQ2SEQ_WITH_PAST_MODELS), skip_on_empty=True)
492
493
494
495
496
    @slow
    @require_tf
    def test_tensorflow_export_seq2seq_with_past(
        self, test_name, name, model_name, feature, onnx_config_class_constructor
    ):
497
        self._onnx_export(test_name, name, model_name, feature, onnx_config_class_constructor, framework="tf")
498
499
500
501
502


class StableDropoutTestCase(TestCase):
    """Tests export of StableDropout module."""

503
    @unittest.skip("torch 2.0.0 gives `torch.onnx.errors.OnnxExporterError: Module onnx is not installed!`.")
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    @require_torch
    @pytest.mark.filterwarnings("ignore:.*Dropout.*:UserWarning:torch.onnx.*")  # torch.onnx is spammy.
    def test_training(self):
        """Tests export of StableDropout in training mode."""
        devnull = open(os.devnull, "wb")
        # drop_prob must be > 0 for the test to be meaningful
        sd = modeling_deberta.StableDropout(0.1)
        # Avoid warnings in training mode
        do_constant_folding = False
        # Dropout is a no-op in inference mode
        training = torch.onnx.TrainingMode.PRESERVE
        input = (torch.randn(2, 2),)

        torch.onnx.export(
            sd,
            input,
            devnull,
            opset_version=12,  # Minimum supported
            do_constant_folding=do_constant_folding,
            training=training,
        )

        # Expected to fail with opset_version < 12
        with self.assertRaises(Exception):
            torch.onnx.export(
                sd,
                input,
                devnull,
                opset_version=11,
                do_constant_folding=do_constant_folding,
                training=training,
            )