tokenization_utils.py 36.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
21
22
import json
import six
23
24
25
26
27
28
from io import open

from .file_utils import cached_path

logger = logging.getLogger(__name__)

29
30
SPECIAL_TOKENS_MAP_FILE = 'special_tokens_map.json'
ADDED_TOKENS_FILE = 'added_tokens.json'
31
32

class PreTrainedTokenizer(object):
33
34
    """ Base class for all tokenizers.
    Handle all the shared methods for tokenization and special tokens as well as methods dowloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
35

36
    This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
37

38
39
40
41
42
43
44
45
    Class attributes (overridden by derived classes):

        - ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string).
        - ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file.
        - ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size.

    Parameters:

thomwolf's avatar
thomwolf committed
46
        - ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token`` and ``self.bos_token_id``
47

thomwolf's avatar
thomwolf committed
48
        - ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token`` and ``self.eos_token_id``
49

thomwolf's avatar
thomwolf committed
50
        - ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token`` and ``self.unk_token_id``
51

thomwolf's avatar
thomwolf committed
52
        - ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token`` and ``self.sep_token_id``
53

thomwolf's avatar
thomwolf committed
54
        - ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token`` and ``self.pad_token_id``
55

thomwolf's avatar
thomwolf committed
56
        - ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token`` and ``self.cls_token_id``
57

thomwolf's avatar
thomwolf committed
58
        - ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id``
59

thomwolf's avatar
thomwolf committed
60
        - ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``
61
62
63
64
65
    """
    vocab_files_names = {}
    pretrained_vocab_files_map = {}
    max_model_input_sizes = {}

66
67
68
69
70
71
    SPECIAL_TOKENS_ATTRIBUTES = ["bos_token", "eos_token", "unk_token", "sep_token",
                                 "pad_token", "cls_token", "mask_token",
                                 "additional_special_tokens"]

    @property
    def bos_token(self):
72
        """ Beginning of sentence token (string). Log an error if used while not having been set. """
73
74
75
76
77
78
        if self._bos_token is None:
            logger.error("Using bos_token, but it is not set yet.")
        return self._bos_token

    @property
    def eos_token(self):
79
        """ End of sentence token (string). Log an error if used while not having been set. """
80
81
82
83
84
85
        if self._eos_token is None:
            logger.error("Using eos_token, but it is not set yet.")
        return self._eos_token

    @property
    def unk_token(self):
86
        """ Unknown token (string). Log an error if used while not having been set. """
87
88
89
90
91
92
        if self._unk_token is None:
            logger.error("Using unk_token, but it is not set yet.")
        return self._unk_token

    @property
    def sep_token(self):
93
        """ Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
94
95
96
97
98
99
        if self._sep_token is None:
            logger.error("Using sep_token, but it is not set yet.")
        return self._sep_token

    @property
    def pad_token(self):
100
        """ Padding token (string). Log an error if used while not having been set. """
101
102
103
104
105
106
        if self._pad_token is None:
            logger.error("Using pad_token, but it is not set yet.")
        return self._pad_token

    @property
    def cls_token(self):
107
        """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
108
109
110
111
112
113
        if self._cls_token is None:
            logger.error("Using cls_token, but it is not set yet.")
        return self._cls_token

    @property
    def mask_token(self):
114
        """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
115
116
117
118
119
120
        if self._mask_token is None:
            logger.error("Using mask_token, but it is not set yet.")
        return self._mask_token

    @property
    def additional_special_tokens(self):
121
        """ All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        if self._additional_special_tokens is None:
            logger.error("Using additional_special_tokens, but it is not set yet.")
        return self._additional_special_tokens

    @bos_token.setter
    def bos_token(self, value):
        self._bos_token = value

    @eos_token.setter
    def eos_token(self, value):
        self._eos_token = value

    @unk_token.setter
    def unk_token(self, value):
        self._unk_token = value

    @sep_token.setter
    def sep_token(self, value):
        self._sep_token = value

    @pad_token.setter
    def pad_token(self, value):
        self._pad_token = value

    @cls_token.setter
    def cls_token(self, value):
        self._cls_token = value

    @mask_token.setter
    def mask_token(self, value):
        self._mask_token = value

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """
        if self._bos_token is None:
            logger.error("Using bos_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._bos_token)

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """
        if self._eos_token is None:
            logger.error("Using eos_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._eos_token)

    @property
    def unk_token_is(self):
        """ Id of the unknown token in the vocabulary. Log an error if used while not having been set. """
        if self._unk_token is None:
            logger.error("Using unk_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._unk_token)

    @property
    def sep_token_id(self):
        """ Id of the separation token in the vocabulary. E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
        if self._sep_token is None:
            logger.error("Using sep_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._sep_token)

    @property
    def pad_token_id(self):
        """ Id of the padding token in the vocabulary. Log an error if used while not having been set. """
        if self._pad_token is None:
            logger.error("Using pad_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._pad_token)

    @property
    def cls_token_id(self):
        """ Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
        if self._cls_token is None:
            logger.error("Using cls_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._cls_token)

    @property
    def mask_token_id(self):
        """ Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
        if self._mask_token is None:
            logger.error("Using mask_token, but it is not set yet.")
        return self.convert_tokens_to_ids(self._mask_token)

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers). Log an error if used while not having been set. """
        if self._additional_special_tokens is None:
            logger.error("Using additional_special_tokens, but it is not set yet.")
        return self.convert_tokens_to_ids(self._additional_special_tokens)

214
215
216
217
218
219
220
221
222
223
224
    def __init__(self, max_len=None, **kwargs):
        self._bos_token = None
        self._eos_token = None
        self._unk_token = None
        self._sep_token = None
        self._pad_token = None
        self._cls_token = None
        self._mask_token = None
        self._additional_special_tokens = []

        self.max_len = max_len if max_len is not None else int(1e12)
225
226
227
        self.max_len_single_sentence = self.max_len
        self.max_len_sentences_pair = self.max_len

228
229
230
231
        self.added_tokens_encoder = {}
        self.added_tokens_decoder = {}

        for key, value in kwargs.items():
232
            if key in self.SPECIAL_TOKENS_ATTRIBUTES:
233
234
235
236
                if key == 'additional_special_tokens':
                    assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                else:
                    assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
237
238
239
                setattr(self, key, value)


240
241
    @classmethod
    def from_pretrained(cls, *inputs, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
242
243
        r"""
        Instantiate a :class:`~pytorch_transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer.
244

LysandreJik's avatar
Doc  
LysandreJik committed
245
        Args:
246
247
248
249
250
251
252
253
254
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.

255
256
257
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the vocabulary files and override the cached versions if they exists.

258
259
260
261
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
            inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.

            kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details.

        Examples::

            # We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer

            # Download vocabulary from S3 and cache.
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

            # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')

            # If the tokenizer uses a single vocabulary file, you can point directly to this file
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt')

            # You can link tokens to special vocabulary when instantiating
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>')
            # You should be sure '<unk>' is in the vocabulary when doing that.
            # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
            assert tokenizer.unk_token == '<unk>'

        """
286
287
        return cls._from_pretrained(*inputs, **kwargs)

288

289
    @classmethod
thomwolf's avatar
thomwolf committed
290
291
    def _from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        cache_dir = kwargs.pop('cache_dir', None)
292
        force_download = kwargs.pop('force_download', False)
293
        proxies = kwargs.pop('proxies', None)
thomwolf's avatar
thomwolf committed
294

295
296
297
        s3_models = list(cls.max_model_input_sizes.keys())
        vocab_files = {}
        if pretrained_model_name_or_path in s3_models:
thomwolf's avatar
thomwolf committed
298
            # Get the vocabulary from AWS S3 bucket
299
300
301
            for file_id, map_list in cls.pretrained_vocab_files_map.items():
                vocab_files[file_id] = map_list[pretrained_model_name_or_path]
        else:
thomwolf's avatar
thomwolf committed
302
            # Get the vocabulary from local files
303
304
305
306
307
            logger.info(
                "Model name '{}' not found in model shortcut name list ({}). "
                "Assuming '{}' is a path or url to a directory containing tokenizer files.".format(
                    pretrained_model_name_or_path, ', '.join(s3_models),
                    pretrained_model_name_or_path))
thomwolf's avatar
thomwolf committed
308
309
310

            # Look for the tokenizer main vocabulary files
            for file_id, file_name in cls.vocab_files_names.items():
311
                if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
312
                    # If a directory is provided we look for the standard filenames
313
314
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                else:
thomwolf's avatar
thomwolf committed
315
                    # If a path to a file is provided we use it (will only work for non-BPE tokenizer using a single vocabulary file)
316
317
                    full_file_name = pretrained_model_name_or_path
                if not os.path.exists(full_file_name):
318
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
319
320
                    full_file_name = None
                vocab_files[file_id] = full_file_name
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

            # Look for the additional tokens files
            all_vocab_files_names = {'added_tokens_file': ADDED_TOKENS_FILE,
                                     'special_tokens_map_file': SPECIAL_TOKENS_MAP_FILE}

            # If a path to a file was provided, get the parent directory
            saved_directory = pretrained_model_name_or_path
            if os.path.exists(saved_directory) and not os.path.isdir(saved_directory):
                saved_directory = os.path.dirname(saved_directory)

            for file_id, file_name in all_vocab_files_names.items():
                full_file_name = os.path.join(saved_directory, file_name)
                if not os.path.exists(full_file_name):
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
                    full_file_name = None
                vocab_files[file_id] = full_file_name

338
339
340
341
342
343
344
345
            if all(full_file_name is None for full_file_name in vocab_files.values()):
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find tokenizer files"
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, ))
                return None
346
347

        # Get files from url, cache, or disk depending on the case
348
349
350
351
352
353
        try:
            resolved_vocab_files = {}
            for file_id, file_path in vocab_files.items():
                if file_path is None:
                    resolved_vocab_files[file_id] = None
                else:
354
                    resolved_vocab_files[file_id] = cached_path(file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
355
        except EnvironmentError as e:
356
357
358
359
360
361
362
363
364
            if pretrained_model_name_or_path in s3_models:
                logger.error("Couldn't reach server to download vocabulary.")
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, str(vocab_files.keys())))
365
            raise e
366
367
368
369
370
371
372
373

        for file_id, file_path in vocab_files.items():
            if file_path == resolved_vocab_files[file_id]:
                logger.info("loading file {}".format(file_path))
            else:
                logger.info("loading file {} from cache at {}".format(
                    file_path, resolved_vocab_files[file_id]))

374
        # Set max length if needed
375
376
377
378
        if pretrained_model_name_or_path in cls.max_model_input_sizes:
            # if we're using a pretrained model, ensure the tokenizer
            # wont index sequences longer than the number of positional embeddings
            max_len = cls.max_model_input_sizes[pretrained_model_name_or_path]
379
380
            if max_len is not None and isinstance(max_len, (int, float)):
                kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
381

thomwolf's avatar
thomwolf committed
382
        # Merge resolved_vocab_files arguments in kwargs.
383
384
        added_tokens_file = resolved_vocab_files.pop('added_tokens_file', None)
        special_tokens_map_file = resolved_vocab_files.pop('special_tokens_map_file', None)
thomwolf's avatar
thomwolf committed
385
        for args_name, file_path in resolved_vocab_files.items():
386
387
388
389
390
391
392
            if args_name not in kwargs:
                kwargs[args_name] = file_path
        if special_tokens_map_file is not None:
            special_tokens_map = json.load(open(special_tokens_map_file, encoding="utf-8"))
            for key, value in special_tokens_map.items():
                if key not in kwargs:
                    kwargs[key] = value
thomwolf's avatar
thomwolf committed
393

394
        # Instantiate tokenizer.
thomwolf's avatar
thomwolf committed
395
        tokenizer = cls(*inputs, **kwargs)
396

397
398
        # Add supplementary tokens.
        if added_tokens_file is not None:
thomwolf's avatar
thomwolf committed
399
            added_tok_encoder = json.load(open(added_tokens_file, encoding="utf-8"))
400
401
402
403
            added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
            tokenizer.added_tokens_encoder.update(added_tok_encoder)
            tokenizer.added_tokens_decoder.update(added_tok_decoder)

404
405
        return tokenizer

thomwolf's avatar
thomwolf committed
406

407
408
    def save_pretrained(self, save_directory):
        """ Save the tokenizer vocabulary files (with added tokens) and the
409
410
411
            special-tokens-to-class-attributes-mapping to a directory.

            This method make sure the full tokenizer can then be re-loaded using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
412
413
414
415
416
417
418
419
420
421
422
423
        """
        if not os.path.isdir(save_directory):
            logger.error("Saving directory ({}) should be a directory".format(save_directory))
            return

        special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE)
        added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE)

        with open(special_tokens_map_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.special_tokens_map, ensure_ascii=False))

        with open(added_tokens_file, 'w', encoding='utf-8') as f:
thomwolf's avatar
thomwolf committed
424
            if self.added_tokens_encoder:
425
                out_str = json.dumps(self.added_tokens_encoder, ensure_ascii=False)
thomwolf's avatar
thomwolf committed
426
427
428
            else:
                out_str = u"{}"
            f.write(out_str)
429
430
431
432
433
434
435

        vocab_files = self.save_vocabulary(save_directory)

        return vocab_files + (special_tokens_map_file, added_tokens_file)


    def save_vocabulary(self, save_directory):
436
        """ Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
437
            and special token mappings.
438
439

            Please use :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full Tokenizer state if you want to reload it using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
440
        """
thomwolf's avatar
thomwolf committed
441
442
        raise NotImplementedError

443
444

    def vocab_size(self):
445
        """ Size of the base vocabulary (without the added tokens) """
thomwolf's avatar
thomwolf committed
446
447
        raise NotImplementedError

448
449

    def __len__(self):
450
        """ Size of the full vocabulary with the added tokens """
451
452
453
454
        return self.vocab_size + len(self.added_tokens_encoder)


    def add_tokens(self, new_tokens):
LysandreJik's avatar
Doc  
LysandreJik committed
455
456
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the
457
458
        vocabulary, they are added to it with indices starting from length of the current vocabulary.

LysandreJik's avatar
Doc  
LysandreJik committed
459
460
        Args:
            new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
461

LysandreJik's avatar
Doc  
LysandreJik committed
462
463
        Returns:
            Number of tokens added to the vocabulary.
464
465
466
467
468
469
470
471
472
473

        Examples::

            # Let's see how to increase the vocabulary of Bert model and tokenizer
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertModel.from_pretrained('bert-base-uncased')

            num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
474
475
476
477
478
479
        """
        if not new_tokens:
            return 0

        to_add_tokens = []
        for token in new_tokens:
480
            assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode))
thomwolf's avatar
thomwolf committed
481
482
            if token != self.unk_token and \
                    self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token):
483
484
485
486
487
488
489
490
491
492
493
494
                to_add_tokens.append(token)
                logger.info("Adding %s to the vocabulary", token)

        added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens))
        added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
        self.added_tokens_encoder.update(added_tok_encoder)
        self.added_tokens_decoder.update(added_tok_decoder)

        return len(to_add_tokens)


    def add_special_tokens(self, special_tokens_dict):
LysandreJik's avatar
Doc  
LysandreJik committed
495
496
497
498
        """
        Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them
        to class attributes. If special tokens are NOT in the vocabulary, they are added
        to it (indexed starting from the last index of the current vocabulary).
499

thomwolf's avatar
thomwolf committed
500
501
502
503
504
505
506
        Using `add_special_tokens` will ensure your special tokens can be used in several ways:

        - special tokens are carefully handled by the tokenizer (they are never split)
        - you can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts.

        When possible, special tokens are already registered for provided pretrained models (ex: BertTokenizer cls_token is already registered to be '[CLS]' and XLM's one is also registered to be '</s>')

LysandreJik's avatar
Doc  
LysandreJik committed
507
508
509
510
        Args:
            special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes:
                [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``,
                ``additional_special_tokens``].
511

LysandreJik's avatar
Doc  
LysandreJik committed
512
                Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
513

LysandreJik's avatar
Doc  
LysandreJik committed
514
515
        Returns:
            Number of tokens added to the vocabulary.
516
517
518
519
520
521
522
523
524
525
526
527
528
529

        Examples::

            # Let's see how to add a new classification token to GPT-2
            tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
            model = GPT2Model.from_pretrained('gpt2')

            special_tokens_dict = {'cls_token': '<CLS>'}

            num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.

            assert tokenizer.cls_token == '<CLS>'
530
531
532
533
        """
        if not special_tokens_dict:
            return 0

534
        added_tokens = 0
535
        for key, value in special_tokens_dict.items():
536
            assert key in self.SPECIAL_TOKENS_ATTRIBUTES
537
538
539
540
541
542
            if key == 'additional_special_tokens':
                assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                added_tokens += self.add_tokens(value)
            else:
                assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
                added_tokens += self.add_tokens([value])
543
544
545
            logger.info("Assigning %s to the %s key of the tokenizer", value, key)
            setattr(self, key, value)

546
        return added_tokens
547
548
549
550
551
552
553
554

    def tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

            Take care of added tokens.
        """
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        def split_on_token(tok, text):
            result = []
            split_text = text.split(tok)
            for i, sub_text in enumerate(split_text):
                sub_text = sub_text.strip()
                if i == 0 and not sub_text:
                    result += [tok]
                elif i == len(split_text) - 1:
                    if sub_text:
                        result += [sub_text]
                    else:
                        pass
                else:
                    if sub_text:
                        result += [sub_text]
                    result += [tok]
            return result

573
574
575
576
577
        def split_on_tokens(tok_list, text):
            if not text:
                return []
            if not tok_list:
                return self._tokenize(text, **kwargs)
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self.added_tokens_encoder \
                            and sub_text not in self.all_special_tokens:
                        tokenized_text += split_on_token(tok, sub_text)
                    else:
                        tokenized_text += [sub_text]
                text_list = tokenized_text

            return sum((self._tokenize(token, **kwargs) if token not \
                    in self.added_tokens_encoder and token not in self.all_special_tokens \
                    else [token] for token in tokenized_text), [])
594

595
        added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens
596
597
598
599
600
601
602
603
        tokenized_text = split_on_tokens(added_tokens, text)
        return tokenized_text

    def _tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

604
            Do NOT take care of added tokens.
605
        """
thomwolf's avatar
thomwolf committed
606
607
        raise NotImplementedError

608
    def convert_tokens_to_ids(self, tokens):
609
610
        """ Converts a single token, or a sequence of tokens, (str/unicode) in a single integer id
            (resp. a sequence of ids), using the vocabulary.
611
612
        """
        if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)):
613
            return self._convert_token_to_id_with_added_voc(tokens)
614
615
616

        ids = []
        for token in tokens:
617
            ids.append(self._convert_token_to_id_with_added_voc(token))
618
619
620
621
622
623
        if len(ids) > self.max_len:
            logger.warning("Token indices sequence length is longer than the specified maximum sequence length "
                           "for this model ({} > {}). Running this sequence through the model will result in "
                           "indexing errors".format(len(ids), self.max_len))
        return ids

624
    def _convert_token_to_id_with_added_voc(self, token):
625
626
627
628
629
        if token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        return self._convert_token_to_id(token)

    def _convert_token_to_id(self, token):
thomwolf's avatar
thomwolf committed
630
631
        raise NotImplementedError

LysandreJik's avatar
LysandreJik committed
632
    def encode(self, text, text_pair=None, add_special_tokens=False):
LysandreJik's avatar
Doc  
LysandreJik committed
633
634
        """
        Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
635
        
LysandreJik's avatar
Doc  
LysandreJik committed
636
637
638
639
640
641
642
        Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``.

        Args:
            text: The first sequence to be encoded.
            text_pair: Optional second sequence to be encoded.
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
643
        """
LysandreJik's avatar
LysandreJik committed
644
        if text_pair is None:
645
646
647
648
            if add_special_tokens:
                return self.add_special_tokens_single_sentence(self.convert_tokens_to_ids(self.tokenize(text)))
            else:
                return self.convert_tokens_to_ids(self.tokenize(text))
649

650
        first_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text)]
LysandreJik's avatar
LysandreJik committed
651
        second_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text_pair)]
652

653
654
655
656
        if add_special_tokens:
            return self.add_special_tokens_sentences_pair(first_sentence_tokens, second_sentence_tokens)
        else:
            return first_sentence_tokens, second_sentence_tokens
657

658
    def add_special_tokens_single_sentence(self, token_ids):
LysandreJik's avatar
LysandreJik committed
659
660
        logger.warning("This tokenizer does not make use of special tokens. The sequence has been returned with no modification.")
        return token_ids
661

662
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
LysandreJik's avatar
LysandreJik committed
663
664
        logger.warning("This tokenizer does not make use of special tokens. The two sequences have been concatenated.")
        return token_ids_0 + token_ids_1
665

666
667
668
669
670
671
672
673
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """ Converts a single index or a sequence of indices (integers) in a token "
            (resp.) a sequence of tokens (str/unicode), using the vocabulary and added tokens.

            Args:
                skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
        """
        if isinstance(ids, int):
674
675
676
677
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]
            else:
                return self._convert_id_to_token(ids)
678
679
680
681
682
683
684
685
686
687
688
        tokens = []
        for index in ids:
            if index in self.all_special_ids and skip_special_tokens:
                continue
            if index in self.added_tokens_decoder:
                tokens.append(self.added_tokens_decoder[index])
            else:
                tokens.append(self._convert_id_to_token(index))
        return tokens

    def _convert_id_to_token(self, index):
thomwolf's avatar
thomwolf committed
689
690
        raise NotImplementedError

691
692
693
694
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string.
            The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
            but we often want to remove sub-word tokenization artifacts at the same time.
695
        """
696
        return ' '.join(self.convert_ids_to_tokens(tokens))
697
698

    def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
LysandreJik's avatar
Doc  
LysandreJik committed
699
700
701
        """
        Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
        with options to remove special tokens and clean up tokenization spaces.
702
        Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``.
703
704
        """
        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
705
        text = self.convert_tokens_to_string(filtered_tokens)
706

707
708
709
        if self._sep_token is not None and self._sep_token in text:
            text = text.replace(self._cls_token, self._sep_token)
            split_text = list(filter(lambda sentence: len(sentence) > 0, text.split(self._sep_token)))
710
711
712
713
714
715
716
717
718
719
720
            if clean_up_tokenization_spaces:
                clean_text = [self.clean_up_tokenization(text) for text in split_text]
                return clean_text
            else:
                return split_text
        else:
            if clean_up_tokenization_spaces:
                clean_text = self.clean_up_tokenization(text)
                return clean_text
            else:
                return text
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

    @property
    def special_tokens_map(self):
        """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their
            values ('<unk>', '<cls>'...)
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = attr_value
        return set_attr

    @property
    def all_special_tokens(self):
        """ List all the special tokens ('<unk>', '<cls>'...) mapped to class attributes
            (cls_token, unk_token...).
        """
        all_toks = []
        set_attr = self.special_tokens_map
        for attr_value in set_attr.values():
            all_toks = all_toks + (attr_value if isinstance(attr_value, (list, tuple)) else [attr_value])
        all_toks = list(set(all_toks))
        return all_toks

    @property
    def all_special_ids(self):
        """ List the vocabulary indices of the special tokens ('<unk>', '<cls>'...) mapped to
            class attributes (cls_token, unk_token...).
        """
        all_toks = self.all_special_tokens
752
        all_ids = list(self._convert_token_to_id(t) for t in all_toks)
753
754
        return all_ids

thomwolf's avatar
thomwolf committed
755
756
    @staticmethod
    def clean_up_tokenization(out_string):
757
758
        """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms.
        """
thomwolf's avatar
thomwolf committed
759
760
761
762
        out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
                        ).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
                        ).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
        return out_string