tokenization_utils.py 32.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
21
22
import json
import six
23
24
25
26
27
28
from io import open

from .file_utils import cached_path

logger = logging.getLogger(__name__)

29
30
SPECIAL_TOKENS_MAP_FILE = 'special_tokens_map.json'
ADDED_TOKENS_FILE = 'added_tokens.json'
31
32

class PreTrainedTokenizer(object):
33
34
    """ Base class for all tokenizers.
    Handle all the shared methods for tokenization and special tokens as well as methods dowloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
35

36
    This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
    Class attributes (overridden by derived classes):

        - ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string).
        - ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file.
        - ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size.

    Parameters:

        - ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token``

        - ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token``

        - ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token``

        - ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token``

        - ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token``

        - ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token``

        - ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token``

        - ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens``
61
62
63
64
65
    """
    vocab_files_names = {}
    pretrained_vocab_files_map = {}
    max_model_input_sizes = {}

66
67
68
69
    SPECIAL_TOKENS_ATTRIBUTES = ["bos_token", "eos_token", "unk_token", "sep_token",
                                 "pad_token", "cls_token", "mask_token",
                                 "additional_special_tokens"]

70
71
72
73
74
75
76
77
    @property
    def max_len_single_sentence(self):
        return self.max_len  # Default to max_len but can be smaller in specific tokenizers to take into account special tokens

    @property
    def max_len_sentences_pair(self):
        return self.max_len  # Default to max_len but can be smaller in specific tokenizers to take into account special tokens

78
79
    @property
    def bos_token(self):
80
        """ Beginning of sentence token (string). Log an error if used while not having been set. """
81
82
83
84
85
86
        if self._bos_token is None:
            logger.error("Using bos_token, but it is not set yet.")
        return self._bos_token

    @property
    def eos_token(self):
87
        """ End of sentence token (string). Log an error if used while not having been set. """
88
89
90
91
92
93
        if self._eos_token is None:
            logger.error("Using eos_token, but it is not set yet.")
        return self._eos_token

    @property
    def unk_token(self):
94
        """ Unknown token (string). Log an error if used while not having been set. """
95
96
97
98
99
100
        if self._unk_token is None:
            logger.error("Using unk_token, but it is not set yet.")
        return self._unk_token

    @property
    def sep_token(self):
101
        """ Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
102
103
104
105
106
107
        if self._sep_token is None:
            logger.error("Using sep_token, but it is not set yet.")
        return self._sep_token

    @property
    def pad_token(self):
108
        """ Padding token (string). Log an error if used while not having been set. """
109
110
111
112
113
114
        if self._pad_token is None:
            logger.error("Using pad_token, but it is not set yet.")
        return self._pad_token

    @property
    def cls_token(self):
115
        """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
116
117
118
119
120
121
        if self._cls_token is None:
            logger.error("Using cls_token, but it is not set yet.")
        return self._cls_token

    @property
    def mask_token(self):
122
        """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
123
124
125
126
127
128
        if self._mask_token is None:
            logger.error("Using mask_token, but it is not set yet.")
        return self._mask_token

    @property
    def additional_special_tokens(self):
129
        """ All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        if self._additional_special_tokens is None:
            logger.error("Using additional_special_tokens, but it is not set yet.")
        return self._additional_special_tokens

    @bos_token.setter
    def bos_token(self, value):
        self._bos_token = value

    @eos_token.setter
    def eos_token(self, value):
        self._eos_token = value

    @unk_token.setter
    def unk_token(self, value):
        self._unk_token = value

    @sep_token.setter
    def sep_token(self, value):
        self._sep_token = value

    @pad_token.setter
    def pad_token(self, value):
        self._pad_token = value

    @cls_token.setter
    def cls_token(self, value):
        self._cls_token = value

    @mask_token.setter
    def mask_token(self, value):
        self._mask_token = value

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

    def __init__(self, max_len=None, **kwargs):
        self._bos_token = None
        self._eos_token = None
        self._unk_token = None
        self._sep_token = None
        self._pad_token = None
        self._cls_token = None
        self._mask_token = None
        self._additional_special_tokens = []

        self.max_len = max_len if max_len is not None else int(1e12)
        self.added_tokens_encoder = {}
        self.added_tokens_decoder = {}

        for key, value in kwargs.items():
181
            if key in self.SPECIAL_TOKENS_ATTRIBUTES:
182
183
184
185
                if key == 'additional_special_tokens':
                    assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                else:
                    assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
186
187
188
                setattr(self, key, value)


189
190
    @classmethod
    def from_pretrained(cls, *inputs, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
191
192
        r"""
        Instantiate a :class:`~pytorch_transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer.
193

LysandreJik's avatar
Doc  
LysandreJik committed
194
        Args:
195
196
197
198
199
200
201
202
203
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.

204
205
206
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the vocabulary files and override the cached versions if they exists.

207
208
209
210
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
            inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.

            kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details.

        Examples::

            # We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer

            # Download vocabulary from S3 and cache.
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

            # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')

            # If the tokenizer uses a single vocabulary file, you can point directly to this file
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt')

            # You can link tokens to special vocabulary when instantiating
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>')
            # You should be sure '<unk>' is in the vocabulary when doing that.
            # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
            assert tokenizer.unk_token == '<unk>'

        """
235
236
        return cls._from_pretrained(*inputs, **kwargs)

237

238
    @classmethod
thomwolf's avatar
thomwolf committed
239
240
    def _from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
        cache_dir = kwargs.pop('cache_dir', None)
241
        force_download = kwargs.pop('force_download', False)
242
        proxies = kwargs.pop('proxies', None)
thomwolf's avatar
thomwolf committed
243

244
245
246
        s3_models = list(cls.max_model_input_sizes.keys())
        vocab_files = {}
        if pretrained_model_name_or_path in s3_models:
thomwolf's avatar
thomwolf committed
247
            # Get the vocabulary from AWS S3 bucket
248
249
250
            for file_id, map_list in cls.pretrained_vocab_files_map.items():
                vocab_files[file_id] = map_list[pretrained_model_name_or_path]
        else:
thomwolf's avatar
thomwolf committed
251
            # Get the vocabulary from local files
252
253
254
255
256
            logger.info(
                "Model name '{}' not found in model shortcut name list ({}). "
                "Assuming '{}' is a path or url to a directory containing tokenizer files.".format(
                    pretrained_model_name_or_path, ', '.join(s3_models),
                    pretrained_model_name_or_path))
thomwolf's avatar
thomwolf committed
257
258
259

            # Look for the tokenizer main vocabulary files
            for file_id, file_name in cls.vocab_files_names.items():
260
                if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
261
                    # If a directory is provided we look for the standard filenames
262
263
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                else:
thomwolf's avatar
thomwolf committed
264
                    # If a path to a file is provided we use it (will only work for non-BPE tokenizer using a single vocabulary file)
265
266
                    full_file_name = pretrained_model_name_or_path
                if not os.path.exists(full_file_name):
267
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
268
269
                    full_file_name = None
                vocab_files[file_id] = full_file_name
thomwolf's avatar
thomwolf committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

            # Look for the additional tokens files
            all_vocab_files_names = {'added_tokens_file': ADDED_TOKENS_FILE,
                                     'special_tokens_map_file': SPECIAL_TOKENS_MAP_FILE}

            # If a path to a file was provided, get the parent directory
            saved_directory = pretrained_model_name_or_path
            if os.path.exists(saved_directory) and not os.path.isdir(saved_directory):
                saved_directory = os.path.dirname(saved_directory)

            for file_id, file_name in all_vocab_files_names.items():
                full_file_name = os.path.join(saved_directory, file_name)
                if not os.path.exists(full_file_name):
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
                    full_file_name = None
                vocab_files[file_id] = full_file_name

287
288
289
290
291
292
293
294
            if all(full_file_name is None for full_file_name in vocab_files.values()):
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find tokenizer files"
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, ))
                return None
295
296

        # Get files from url, cache, or disk depending on the case
297
298
299
300
301
302
        try:
            resolved_vocab_files = {}
            for file_id, file_path in vocab_files.items():
                if file_path is None:
                    resolved_vocab_files[file_id] = None
                else:
303
                    resolved_vocab_files[file_id] = cached_path(file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
        except EnvironmentError:
            if pretrained_model_name_or_path in s3_models:
                logger.error("Couldn't reach server to download vocabulary.")
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, str(vocab_files.keys())))
            return None

        for file_id, file_path in vocab_files.items():
            if file_path == resolved_vocab_files[file_id]:
                logger.info("loading file {}".format(file_path))
            else:
                logger.info("loading file {} from cache at {}".format(
                    file_path, resolved_vocab_files[file_id]))

323
        # Set max length if needed
324
325
326
327
        if pretrained_model_name_or_path in cls.max_model_input_sizes:
            # if we're using a pretrained model, ensure the tokenizer
            # wont index sequences longer than the number of positional embeddings
            max_len = cls.max_model_input_sizes[pretrained_model_name_or_path]
328
329
            if max_len is not None and isinstance(max_len, (int, float)):
                kwargs['max_len'] = min(kwargs.get('max_len', int(1e12)), max_len)
330

thomwolf's avatar
thomwolf committed
331
        # Merge resolved_vocab_files arguments in kwargs.
332
333
        added_tokens_file = resolved_vocab_files.pop('added_tokens_file', None)
        special_tokens_map_file = resolved_vocab_files.pop('special_tokens_map_file', None)
thomwolf's avatar
thomwolf committed
334
        for args_name, file_path in resolved_vocab_files.items():
335
336
337
338
339
340
341
            if args_name not in kwargs:
                kwargs[args_name] = file_path
        if special_tokens_map_file is not None:
            special_tokens_map = json.load(open(special_tokens_map_file, encoding="utf-8"))
            for key, value in special_tokens_map.items():
                if key not in kwargs:
                    kwargs[key] = value
thomwolf's avatar
thomwolf committed
342

343
        # Instantiate tokenizer.
thomwolf's avatar
thomwolf committed
344
        tokenizer = cls(*inputs, **kwargs)
345

346
347
        # Add supplementary tokens.
        if added_tokens_file is not None:
thomwolf's avatar
thomwolf committed
348
            added_tok_encoder = json.load(open(added_tokens_file, encoding="utf-8"))
349
350
351
352
            added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
            tokenizer.added_tokens_encoder.update(added_tok_encoder)
            tokenizer.added_tokens_decoder.update(added_tok_decoder)

353
354
        return tokenizer

thomwolf's avatar
thomwolf committed
355

356
357
    def save_pretrained(self, save_directory):
        """ Save the tokenizer vocabulary files (with added tokens) and the
358
359
360
            special-tokens-to-class-attributes-mapping to a directory.

            This method make sure the full tokenizer can then be re-loaded using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
361
362
363
364
365
366
367
368
369
370
371
372
        """
        if not os.path.isdir(save_directory):
            logger.error("Saving directory ({}) should be a directory".format(save_directory))
            return

        special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE)
        added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE)

        with open(special_tokens_map_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.special_tokens_map, ensure_ascii=False))

        with open(added_tokens_file, 'w', encoding='utf-8') as f:
thomwolf's avatar
thomwolf committed
373
            if self.added_tokens_encoder:
374
                out_str = json.dumps(self.added_tokens_encoder, ensure_ascii=False)
thomwolf's avatar
thomwolf committed
375
376
377
            else:
                out_str = u"{}"
            f.write(out_str)
378
379
380
381
382
383
384

        vocab_files = self.save_vocabulary(save_directory)

        return vocab_files + (special_tokens_map_file, added_tokens_file)


    def save_vocabulary(self, save_directory):
385
        """ Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
386
            and special token mappings.
387
388

            Please use :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full Tokenizer state if you want to reload it using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
389
        """
thomwolf's avatar
thomwolf committed
390
391
        raise NotImplementedError

392
393

    def vocab_size(self):
394
        """ Size of the base vocabulary (without the added tokens) """
thomwolf's avatar
thomwolf committed
395
396
        raise NotImplementedError

397
398

    def __len__(self):
399
        """ Size of the full vocabulary with the added tokens """
400
401
402
403
        return self.vocab_size + len(self.added_tokens_encoder)


    def add_tokens(self, new_tokens):
LysandreJik's avatar
Doc  
LysandreJik committed
404
405
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the
406
407
        vocabulary, they are added to it with indices starting from length of the current vocabulary.

LysandreJik's avatar
Doc  
LysandreJik committed
408
409
        Args:
            new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
410

LysandreJik's avatar
Doc  
LysandreJik committed
411
412
        Returns:
            Number of tokens added to the vocabulary.
413
414
415
416
417
418
419
420
421
422

        Examples::

            # Let's see how to increase the vocabulary of Bert model and tokenizer
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertModel.from_pretrained('bert-base-uncased')

            num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
423
424
425
426
427
428
        """
        if not new_tokens:
            return 0

        to_add_tokens = []
        for token in new_tokens:
429
            assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode))
thomwolf's avatar
thomwolf committed
430
431
            if token != self.unk_token and \
                    self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token):
432
433
434
435
436
437
438
439
440
441
442
443
                to_add_tokens.append(token)
                logger.info("Adding %s to the vocabulary", token)

        added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens))
        added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
        self.added_tokens_encoder.update(added_tok_encoder)
        self.added_tokens_decoder.update(added_tok_decoder)

        return len(to_add_tokens)


    def add_special_tokens(self, special_tokens_dict):
LysandreJik's avatar
Doc  
LysandreJik committed
444
445
446
447
        """
        Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them
        to class attributes. If special tokens are NOT in the vocabulary, they are added
        to it (indexed starting from the last index of the current vocabulary).
448

LysandreJik's avatar
Doc  
LysandreJik committed
449
450
451
452
        Args:
            special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes:
                [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``,
                ``additional_special_tokens``].
453

LysandreJik's avatar
Doc  
LysandreJik committed
454
                Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
455

LysandreJik's avatar
Doc  
LysandreJik committed
456
457
        Returns:
            Number of tokens added to the vocabulary.
458
459
460
461
462
463
464
465
466
467
468
469
470
471

        Examples::

            # Let's see how to add a new classification token to GPT-2
            tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
            model = GPT2Model.from_pretrained('gpt2')

            special_tokens_dict = {'cls_token': '<CLS>'}

            num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.

            assert tokenizer.cls_token == '<CLS>'
472
473
474
475
        """
        if not special_tokens_dict:
            return 0

476
        added_tokens = 0
477
        for key, value in special_tokens_dict.items():
478
            assert key in self.SPECIAL_TOKENS_ATTRIBUTES
479
480
481
482
483
484
            if key == 'additional_special_tokens':
                assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                added_tokens += self.add_tokens(value)
            else:
                assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
                added_tokens += self.add_tokens([value])
485
486
487
            logger.info("Assigning %s to the %s key of the tokenizer", value, key)
            setattr(self, key, value)

488
        return added_tokens
489
490
491
492
493
494
495
496

    def tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

            Take care of added tokens.
        """
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        def split_on_token(tok, text):
            result = []
            split_text = text.split(tok)
            for i, sub_text in enumerate(split_text):
                sub_text = sub_text.strip()
                if i == 0 and not sub_text:
                    result += [tok]
                elif i == len(split_text) - 1:
                    if sub_text:
                        result += [sub_text]
                    else:
                        pass
                else:
                    if sub_text:
                        result += [sub_text]
                    result += [tok]
            return result

515
516
517
518
519
        def split_on_tokens(tok_list, text):
            if not text:
                return []
            if not tok_list:
                return self._tokenize(text, **kwargs)
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self.added_tokens_encoder \
                            and sub_text not in self.all_special_tokens:
                        tokenized_text += split_on_token(tok, sub_text)
                    else:
                        tokenized_text += [sub_text]
                text_list = tokenized_text

            return sum((self._tokenize(token, **kwargs) if token not \
                    in self.added_tokens_encoder and token not in self.all_special_tokens \
                    else [token] for token in tokenized_text), [])
536

537
        added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens
538
539
540
541
542
543
544
545
        tokenized_text = split_on_tokens(added_tokens, text)
        return tokenized_text

    def _tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

546
            Do NOT take care of added tokens.
547
        """
thomwolf's avatar
thomwolf committed
548
549
        raise NotImplementedError

550
    def convert_tokens_to_ids(self, tokens):
551
552
        """ Converts a single token, or a sequence of tokens, (str/unicode) in a single integer id
            (resp. a sequence of ids), using the vocabulary.
553
554
        """
        if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)):
555
            return self._convert_token_to_id_with_added_voc(tokens)
556
557
558

        ids = []
        for token in tokens:
559
            ids.append(self._convert_token_to_id_with_added_voc(token))
560
561
562
563
564
565
        if len(ids) > self.max_len:
            logger.warning("Token indices sequence length is longer than the specified maximum sequence length "
                           "for this model ({} > {}). Running this sequence through the model will result in "
                           "indexing errors".format(len(ids), self.max_len))
        return ids

566
    def _convert_token_to_id_with_added_voc(self, token):
567
568
569
570
571
        if token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        return self._convert_token_to_id(token)

    def _convert_token_to_id(self, token):
thomwolf's avatar
thomwolf committed
572
573
        raise NotImplementedError

LysandreJik's avatar
LysandreJik committed
574
    def encode(self, text, text_pair=None, add_special_tokens=False):
LysandreJik's avatar
Doc  
LysandreJik committed
575
576
        """
        Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
577
        
LysandreJik's avatar
Doc  
LysandreJik committed
578
579
580
581
582
583
584
        Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``.

        Args:
            text: The first sequence to be encoded.
            text_pair: Optional second sequence to be encoded.
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
585
        """
LysandreJik's avatar
LysandreJik committed
586
        if text_pair is None:
587
588
589
590
            if add_special_tokens:
                return self.add_special_tokens_single_sentence(self.convert_tokens_to_ids(self.tokenize(text)))
            else:
                return self.convert_tokens_to_ids(self.tokenize(text))
591

592
        first_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text)]
LysandreJik's avatar
LysandreJik committed
593
        second_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text_pair)]
594

595
596
597
598
        if add_special_tokens:
            return self.add_special_tokens_sentences_pair(first_sentence_tokens, second_sentence_tokens)
        else:
            return first_sentence_tokens, second_sentence_tokens
599

600
601
    def add_special_tokens_single_sentence(self, token_ids):
        raise NotImplementedError
602

603
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1):
604
        raise NotImplementedError
605

606
607
608
609
610
611
612
613
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """ Converts a single index or a sequence of indices (integers) in a token "
            (resp.) a sequence of tokens (str/unicode), using the vocabulary and added tokens.

            Args:
                skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
        """
        if isinstance(ids, int):
614
615
616
617
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]
            else:
                return self._convert_id_to_token(ids)
618
619
620
621
622
623
624
625
626
627
628
        tokens = []
        for index in ids:
            if index in self.all_special_ids and skip_special_tokens:
                continue
            if index in self.added_tokens_decoder:
                tokens.append(self.added_tokens_decoder[index])
            else:
                tokens.append(self._convert_id_to_token(index))
        return tokens

    def _convert_id_to_token(self, index):
thomwolf's avatar
thomwolf committed
629
630
        raise NotImplementedError

631
632
633
634
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string.
            The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
            but we often want to remove sub-word tokenization artifacts at the same time.
635
        """
636
        return ' '.join(self.convert_ids_to_tokens(tokens))
637
638

    def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
LysandreJik's avatar
Doc  
LysandreJik committed
639
640
641
        """
        Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
        with options to remove special tokens and clean up tokenization spaces.
642
        Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``.
643
644
        """
        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
645
        text = self.convert_tokens_to_string(filtered_tokens)
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

        if self.sep_token is not None and self.sep_token in text:
            text = text.replace(self.cls_token, self.sep_token)
            split_text = list(filter(lambda sentence: len(sentence) > 0, text.split(self.sep_token)))
            if clean_up_tokenization_spaces:
                clean_text = [self.clean_up_tokenization(text) for text in split_text]
                return clean_text
            else:
                return split_text
        else:
            if clean_up_tokenization_spaces:
                clean_text = self.clean_up_tokenization(text)
                return clean_text
            else:
                return text
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

    @property
    def special_tokens_map(self):
        """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their
            values ('<unk>', '<cls>'...)
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = attr_value
        return set_attr

    @property
    def all_special_tokens(self):
        """ List all the special tokens ('<unk>', '<cls>'...) mapped to class attributes
            (cls_token, unk_token...).
        """
        all_toks = []
        set_attr = self.special_tokens_map
        for attr_value in set_attr.values():
            all_toks = all_toks + (attr_value if isinstance(attr_value, (list, tuple)) else [attr_value])
        all_toks = list(set(all_toks))
        return all_toks

    @property
    def all_special_ids(self):
        """ List the vocabulary indices of the special tokens ('<unk>', '<cls>'...) mapped to
            class attributes (cls_token, unk_token...).
        """
        all_toks = self.all_special_tokens
692
        all_ids = list(self._convert_token_to_id(t) for t in all_toks)
693
694
        return all_ids

thomwolf's avatar
thomwolf committed
695
696
    @staticmethod
    def clean_up_tokenization(out_string):
697
698
        """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms.
        """
thomwolf's avatar
thomwolf committed
699
700
701
702
        out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
                        ).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
                        ).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
        return out_string