run_pl_ner.py 8.25 KB
Newer Older
1
2
3
4
5
6
7
8
9
import argparse
import glob
import logging
import os

import numpy as np
import torch
from seqeval.metrics import f1_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
10
from torch.utils.data import DataLoader, TensorDataset
11
12
13
14
15
16
17
18
19
20
21
22
23

from transformer_base import BaseTransformer, add_generic_args, generic_train
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file


logger = logging.getLogger(__name__)


class NERTransformer(BaseTransformer):
    """
    A training module for NER. See BaseTransformer for the core options.
    """

24
25
    mode = "token-classification"

26
27
28
    def __init__(self, hparams):
        self.labels = get_labels(hparams.labels)
        num_labels = len(self.labels)
29
        self.pad_token_label_id = CrossEntropyLoss().ignore_index
30
        super(NERTransformer, self).__init__(hparams, num_labels, self.mode)
31
32
33
34
35

    def forward(self, **inputs):
        return self.model(**inputs)

    def training_step(self, batch, batch_num):
36
        "Compute loss and log."
37
38
39
40
41
42
        inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
        if self.hparams.model_type != "distilbert":
            inputs["token_type_ids"] = (
                batch[2] if self.hparams.model_type in ["bert", "xlnet"] else None
            )  # XLM and RoBERTa don"t use segment_ids

43
        outputs = self(**inputs)
44
45
46
47
        loss = outputs[0]
        tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
        return {"loss": loss, "log": tensorboard_logs}

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    def prepare_data(self):
        "Called to initialize data. Use the call to construct features"
        args = self.hparams
        for mode in ["train", "dev", "test"]:
            cached_features_file = self._feature_file(mode)
            if not os.path.exists(cached_features_file):
                logger.info("Creating features from dataset file at %s", args.data_dir)
                examples = read_examples_from_file(args.data_dir, mode)
                features = convert_examples_to_features(
                    examples,
                    self.labels,
                    args.max_seq_length,
                    self.tokenizer,
                    cls_token_at_end=bool(args.model_type in ["xlnet"]),
                    cls_token=self.tokenizer.cls_token,
                    cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
                    sep_token=self.tokenizer.sep_token,
                    sep_token_extra=bool(args.model_type in ["roberta"]),
                    pad_on_left=bool(args.model_type in ["xlnet"]),
67
68
                    pad_token=self.tokenizer.pad_token_id,
                    pad_token_segment_id=self.tokenizer.pad_token_type_id,
69
70
71
72
73
                    pad_token_label_id=self.pad_token_label_id,
                )
                logger.info("Saving features into cached file %s", cached_features_file)
                torch.save(features, cached_features_file)

74
    def load_dataset(self, mode, batch_size):
75
76
77
78
79
80
81
82
83
84
85
        "Load datasets. Called after prepare data."
        cached_features_file = self._feature_file(mode)
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
        all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
        return DataLoader(
            TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids), batch_size=batch_size
        )
86
87

    def validation_step(self, batch, batch_nb):
88
89
        "Compute validation"

90
91
92
93
94
        inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
        if self.hparams.model_type != "distilbert":
            inputs["token_type_ids"] = (
                batch[2] if self.hparams.model_type in ["bert", "xlnet"] else None
            )  # XLM and RoBERTa don"t use segment_ids
95
        outputs = self(**inputs)
96
97
98
        tmp_eval_loss, logits = outputs[:2]
        preds = logits.detach().cpu().numpy()
        out_label_ids = inputs["labels"].detach().cpu().numpy()
99
        return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
100
101

    def _eval_end(self, outputs):
102
        "Evaluation called for both Val and Test"
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean()
        preds = np.concatenate([x["pred"] for x in outputs], axis=0)
        preds = np.argmax(preds, axis=2)
        out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0)

        label_map = {i: label for i, label in enumerate(self.labels)}
        out_label_list = [[] for _ in range(out_label_ids.shape[0])]
        preds_list = [[] for _ in range(out_label_ids.shape[0])]

        for i in range(out_label_ids.shape[0]):
            for j in range(out_label_ids.shape[1]):
                if out_label_ids[i, j] != self.pad_token_label_id:
                    out_label_list[i].append(label_map[out_label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        results = {
            "val_loss": val_loss_mean,
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

        ret = {k: v for k, v in results.items()}
126
        ret["log"] = results
127
128
129
        return ret, preds_list, out_label_list

    def validation_end(self, outputs):
Shubham Agarwal's avatar
Shubham Agarwal committed
130
131
        # todo: update to validation_epoch_end instead of deprecated validation_end
        # when stable
132
        ret, preds, targets = self._eval_end(outputs)
Shubham Agarwal's avatar
Shubham Agarwal committed
133
134
        logs = ret["log"]
        return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
135

Shubham Agarwal's avatar
Shubham Agarwal committed
136
137
    def test_epoch_end(self, outputs):
        # updating to test_epoch_end instead of deprecated test_end
138
139
        ret, predictions, targets = self._eval_end(outputs)

140
        # Converting to the dict required by pl
Shubham Agarwal's avatar
Shubham Agarwal committed
141
142
143
144
145
        # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
        # pytorch_lightning/trainer/logging.py#L139
        logs = ret["log"]
        # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
        return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        # Add NER specific options
        BaseTransformer.add_model_specific_args(parser, root_dir)
        parser.add_argument(
            "--max_seq_length",
            default=128,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )

        parser.add_argument(
            "--labels",
            default="",
            type=str,
            help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
        )

        parser.add_argument(
            "--data_dir",
            default=None,
            type=str,
            required=True,
            help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
        )

        parser.add_argument(
            "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
        )

        return parser


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    add_generic_args(parser, os.getcwd())
    parser = NERTransformer.add_model_specific_args(parser, os.getcwd())
    args = parser.parse_args()
    model = NERTransformer(args)
    trainer = generic_train(model, args)

    if args.do_predict:
Shubham Agarwal's avatar
Shubham Agarwal committed
190
191
192
193
        # See https://github.com/huggingface/transformers/issues/3159
        # pl use this format to create a checkpoint:
        # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
        # /pytorch_lightning/callbacks/model_checkpoint.py#L169
194
        checkpoints = list(sorted(glob.glob(os.path.join(args.output_dir, "checkpointepoch=*.ckpt"), recursive=True)))
195
        model = model.load_from_checkpoint(checkpoints[-1])
196
        trainer.test(model)