run_pl_ner.py 10.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import argparse
import glob
import logging
import os

import numpy as np
import torch
from seqeval.metrics import f1_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from torch.utils.data.distributed import DistributedSampler

from transformer_base import BaseTransformer, add_generic_args, generic_train
from utils_ner import convert_examples_to_features, get_labels, read_examples_from_file


logger = logging.getLogger(__name__)


class NERTransformer(BaseTransformer):
    """
    A training module for NER. See BaseTransformer for the core options.
    """

    def __init__(self, hparams):
        self.labels = get_labels(hparams.labels)
        num_labels = len(self.labels)
        super(NERTransformer, self).__init__(hparams, num_labels)

    def forward(self, **inputs):
        return self.model(**inputs)

    def training_step(self, batch, batch_num):
        "Compute loss"
        inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
        if self.hparams.model_type != "distilbert":
            inputs["token_type_ids"] = (
                batch[2] if self.hparams.model_type in ["bert", "xlnet"] else None
            )  # XLM and RoBERTa don"t use segment_ids

        outputs = self.forward(**inputs)
        loss = outputs[0]

        tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
        return {"loss": loss, "log": tensorboard_logs}

    def load_dataset(self, mode, batch_size):
        labels = get_labels(self.hparams.labels)
        self.pad_token_label_id = CrossEntropyLoss().ignore_index
        dataset = self.load_and_cache_examples(labels, self.pad_token_label_id, mode)
        if mode == "train":
            if self.hparams.n_gpu > 1:
                sampler = DistributedSampler(dataset)
            else:
                sampler = RandomSampler(dataset)
        else:
            sampler = SequentialSampler(dataset)
        dataloader = DataLoader(dataset, sampler=sampler, batch_size=batch_size)
        return dataloader

    def validation_step(self, batch, batch_nb):
        inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
        if self.hparams.model_type != "distilbert":
            inputs["token_type_ids"] = (
                batch[2] if self.hparams.model_type in ["bert", "xlnet"] else None
            )  # XLM and RoBERTa don"t use segment_ids
        outputs = self.forward(**inputs)
        tmp_eval_loss, logits = outputs[:2]
        preds = logits.detach().cpu().numpy()
        out_label_ids = inputs["labels"].detach().cpu().numpy()

        return {"val_loss": tmp_eval_loss, "pred": preds, "target": out_label_ids}

    def _eval_end(self, outputs):
        "Task specific validation"
        val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean()
        preds = np.concatenate([x["pred"] for x in outputs], axis=0)
        preds = np.argmax(preds, axis=2)
        out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0)

        label_map = {i: label for i, label in enumerate(self.labels)}
        out_label_list = [[] for _ in range(out_label_ids.shape[0])]
        preds_list = [[] for _ in range(out_label_ids.shape[0])]

        for i in range(out_label_ids.shape[0]):
            for j in range(out_label_ids.shape[1]):
                if out_label_ids[i, j] != self.pad_token_label_id:
                    out_label_list[i].append(label_map[out_label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        results = {
            "val_loss": val_loss_mean,
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

        if self.is_logger():
            logger.info(self.proc_rank)
            logger.info("***** Eval results *****")
            for key in sorted(results.keys()):
                logger.info("  %s = %s", key, str(results[key]))

        tensorboard_logs = results
        ret = {k: v for k, v in results.items()}
        ret["log"] = tensorboard_logs
        return ret, preds_list, out_label_list

    def validation_end(self, outputs):
        ret, preds, targets = self._eval_end(outputs)
        return ret

    def test_end(self, outputs):
        ret, predictions, targets = self._eval_end(outputs)

        if self.is_logger():
            # Write output to a file:
            # Save results
            output_test_results_file = os.path.join(self.hparams.output_dir, "test_results.txt")
            with open(output_test_results_file, "w") as writer:
                for key in sorted(ret.keys()):
                    if key != "log":
                        writer.write("{} = {}\n".format(key, str(ret[key])))
            # Save predictions
            output_test_predictions_file = os.path.join(self.hparams.output_dir, "test_predictions.txt")
            with open(output_test_predictions_file, "w") as writer:
                with open(os.path.join(self.hparams.data_dir, "test.txt"), "r") as f:
                    example_id = 0
                    for line in f:
                        if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                            writer.write(line)
                            if not predictions[example_id]:
                                example_id += 1
                        elif predictions[example_id]:
                            output_line = line.split()[0] + " " + predictions[example_id].pop(0) + "\n"
                            writer.write(output_line)
                        else:
                            logger.warning(
                                "Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0]
                            )
        return ret

    def load_and_cache_examples(self, labels, pad_token_label_id, mode):
        args = self.hparams
        tokenizer = self.tokenizer
        if self.proc_rank not in [-1, 0] and mode == "train":
            torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

        # Load data features from cache or dataset file
        cached_features_file = os.path.join(
            args.data_dir,
            "cached_{}_{}_{}".format(
                mode, list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length)
            ),
        )
        if os.path.exists(cached_features_file) and not args.overwrite_cache:
            logger.info("Loading features from cached file %s", cached_features_file)
            features = torch.load(cached_features_file)
        else:
            logger.info("Creating features from dataset file at %s", args.data_dir)
            examples = read_examples_from_file(args.data_dir, mode)
            features = convert_examples_to_features(
                examples,
                labels,
                args.max_seq_length,
                tokenizer,
                cls_token_at_end=bool(args.model_type in ["xlnet"]),
                cls_token=tokenizer.cls_token,
                cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
                sep_token=tokenizer.sep_token,
                sep_token_extra=bool(args.model_type in ["roberta"]),
                pad_on_left=bool(args.model_type in ["xlnet"]),
                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                pad_token_segment_id=4 if args.model_type in ["xlnet"] else 0,
                pad_token_label_id=pad_token_label_id,
            )
            if self.proc_rank in [-1, 0]:
                logger.info("Saving features into cached file %s", cached_features_file)
                torch.save(features, cached_features_file)

        if self.proc_rank == 0 and mode == "train":
            torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

        # Convert to Tensors and build dataset
        all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
        all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)

        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
        return dataset

    @staticmethod
    def add_model_specific_args(parser, root_dir):
        # Add NER specific options
        BaseTransformer.add_model_specific_args(parser, root_dir)
        parser.add_argument(
            "--max_seq_length",
            default=128,
            type=int,
            help="The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded.",
        )

        parser.add_argument(
            "--labels",
            default="",
            type=str,
            help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
        )

        parser.add_argument(
            "--data_dir",
            default=None,
            type=str,
            required=True,
            help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
        )

        parser.add_argument(
            "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
        )

        return parser


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    add_generic_args(parser, os.getcwd())
    parser = NERTransformer.add_model_specific_args(parser, os.getcwd())
    args = parser.parse_args()
    model = NERTransformer(args)
    trainer = generic_train(model, args)

    if args.do_predict:
        checkpoints = list(sorted(glob.glob(args.output_dir + "/checkpoint_*.ckpt", recursive=True)))
        NERTransformer.load_from_checkpoint(checkpoints[-1])
        trainer.test(model)