"src/vscode:/vscode.git/clone" did not exist on "7b95825d7dddb5896397c806119d1819325c25ff"
test_utils.py 110 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import inspect
18
19
import unittest

20
21
import numpy as np

22
from transformers import is_torch_available, pipeline
23
from transformers.testing_utils import require_torch, slow, torch_device
24

25
from ..test_modeling_common import floats_tensor, ids_tensor
26
from .test_framework_agnostic import GenerationIntegrationTestsMixin
27

28
29
30
31

if is_torch_available():
    import torch

32
    from transformers import (
33
        AutoModelForCausalLM,
34
        AutoModelForSeq2SeqLM,
35
36
        AutoModelForSpeechSeq2Seq,
        AutoModelForVision2Seq,
37
        AutoTokenizer,
38
39
40
41
        BartForConditionalGeneration,
        BartTokenizer,
        GPT2LMHeadModel,
        GPT2Tokenizer,
42
        ImageGPTForCausalImageModeling,
43
        SpeechEncoderDecoderModel,
44
45
        top_k_top_p_filtering,
    )
46
47
48
49
50
51
52
53
    from transformers.generation import (
        BeamSampleDecoderOnlyOutput,
        BeamSampleEncoderDecoderOutput,
        BeamSearchDecoderOnlyOutput,
        BeamSearchEncoderDecoderOutput,
        BeamSearchScorer,
        ConstrainedBeamSearchScorer,
        DisjunctiveConstraint,
54
55
        ForcedBOSTokenLogitsProcessor,
        ForcedEOSTokenLogitsProcessor,
56
57
        GreedySearchDecoderOnlyOutput,
        GreedySearchEncoderDecoderOutput,
58
        HammingDiversityLogitsProcessor,
59
        InfNanRemoveLogitsProcessor,
60
        LogitsProcessorList,
61
        MaxLengthCriteria,
62
63
64
        MinLengthLogitsProcessor,
        NoBadWordsLogitsProcessor,
        NoRepeatNGramLogitsProcessor,
65
        PhrasalConstraint,
66
        RepetitionPenaltyLogitsProcessor,
67
68
69
70
        SampleDecoderOnlyOutput,
        SampleEncoderDecoderOutput,
        StoppingCriteria,
        StoppingCriteriaList,
71
72
73
74
75
76
77
78
79
        TemperatureLogitsWarper,
        TopKLogitsWarper,
        TopPLogitsWarper,
    )


class GenerationTesterMixin:
    model_tester = None
    all_generative_model_classes = ()
Suraj Patil's avatar
Suraj Patil committed
80
    input_name = "input_ids"
81
82
83

    def _get_input_ids_and_config(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Suraj Patil's avatar
Suraj Patil committed
84
        input_ids = inputs_dict[self.input_name]
85
86
87
88
89
90
91
92
93
94

        # cut to half length & take max batch_size 3
        max_batch_size = 2
        sequence_length = input_ids.shape[-1] // 2
        input_ids = input_ids[:max_batch_size, :sequence_length]

        # generate max 3 tokens
        max_length = input_ids.shape[-1] + 3
        if config.eos_token_id is not None and config.pad_token_id is None:
            # hack to allow generate for models such as GPT2 as is done in `generate()`
95
96
97
            if isinstance(config.eos_token_id, int):
                config.eos_token_id = [config.eos_token_id]
            config.pad_token_id = config.eos_token_id[0]
98
99
100
101
102
103
        # TransfoXL has no attention mask
        if "transfoxl" in config.__class__.__name__.lower():
            attention_mask = None
        else:
            attention_mask = torch.ones_like(input_ids, dtype=torch.long)[:max_batch_size, :sequence_length]

104
105
106
        return config, input_ids, attention_mask, max_length

    @staticmethod
107
108
109
110
111
112
113
114
    def _get_logits_processor_and_kwargs(
        input_length,
        eos_token_id,
        forced_bos_token_id=None,
        forced_eos_token_id=None,
        max_length=None,
        diversity_penalty=None,
    ):
115
        process_kwargs = {
116
            "min_length": input_length + 1 if max_length is None else max_length - 1,
117
118
119
120
121
122
            "bad_words_ids": [[1, 0]],
            "no_repeat_ngram_size": 2,
            "repetition_penalty": 1.2,
        }
        logits_processor = LogitsProcessorList(
            (
123
124
125
126
127
128
129
                [
                    HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2),
                ]
                if diversity_penalty is not None
                else []
            )
            + (
130
131
132
133
134
135
                [
                    MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id),
                ]
                if eos_token_id is not None
                else []
            )
136
137
138
139
140
141
142
143
144
145
146
147
            + (
                [
                    ForcedBOSTokenLogitsProcessor(forced_bos_token_id),
                ]
                if forced_bos_token_id is not None
                else []
            )
            + (
                [ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)]
                if forced_eos_token_id is not None
                else []
            )
148
149
150
151
152
153
154
155
156
157
158
159
160
            + [
                NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id),
                NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]),
                RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]),
            ]
        )
        return process_kwargs, logits_processor

    @staticmethod
    def _get_warper_and_kwargs(num_beams):
        warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7}
        logits_warper = LogitsProcessorList(
            [
Patrick von Platen's avatar
Patrick von Platen committed
161
                TemperatureLogitsWarper(warp_kwargs["temperature"]),
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
                TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
                TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)),
            ]
        )
        return warp_kwargs, logits_warper

    @staticmethod
    def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    @staticmethod
    def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": 2,
            "num_return_sequences": num_return_sequences,
            "num_beam_groups": 2,  # one beam per group
            "diversity_penalty": 2.0,
        }
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=beam_kwargs["num_beam_groups"],
        )
        return beam_kwargs, beam_scorer

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
    @staticmethod
    def _get_constrained_beam_scorer_and_kwargs(batch_size, max_length, constraints, num_return_sequences=1):
        beam_kwargs = {
            "early_stopping": False,
            "length_penalty": 2.0,
            "num_beams": num_return_sequences * 4,
            "num_return_sequences": num_return_sequences,
        }
        beam_scorer = ConstrainedBeamSearchScorer(
            batch_size=batch_size,
            constraints=constraints,
            num_beams=beam_kwargs["num_beams"],
            device=torch_device,
            length_penalty=beam_kwargs["length_penalty"],
            do_early_stopping=beam_kwargs["early_stopping"],
            num_beam_hyps_to_keep=num_return_sequences,
        )
        return beam_kwargs, beam_scorer

226
    @staticmethod
227
228
229
    def _get_encoder_outputs(
        model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1
    ):
230
        encoder = model.get_encoder()
231
232
233
234
235
236
        encoder_outputs = encoder(
            input_ids,
            attention_mask=attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
        )
237
238
239
240
241
242
243
        encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave(
            num_interleave, dim=0
        )
        input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id()
        attention_mask = None
        return encoder_outputs, input_ids, attention_mask

244
245
246
247
248
249
250
251
252
253
254
    def _greedy_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
255
256
        if model.config.is_encoder_decoder:
            max_length = 4
257
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
258
259
260
261
262
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
263
264
265
        )

        kwargs = {}
266
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
267
268
269
270
271
272
273
274
275
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
276
            remove_invalid_values=True,
277
            **logits_process_kwargs,
278
            **model_kwargs,
279
280
281
282
283
284
285
286
287
288
289
290
291
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
292
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
293
294
295
296
297
298
299
300
301
            output_greedy = model.greedy_search(
                input_ids,
                max_length=max_length,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
302
                **model_kwargs,
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            )
        return output_greedy, output_generate

    def _sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        logits_processor,
        logits_warper,
        logits_warper_kwargs,
        process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
323
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
324
325
326
327
328
329
330
331
332
333
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            num_beams=1,
            max_length=max_length,
            num_return_sequences=num_return_sequences,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
334
            remove_invalid_values=True,
335
336
            **logits_warper_kwargs,
            **process_kwargs,
337
            **model_kwargs,
338
339
340
341
342
        )

        torch.manual_seed(0)
        kwargs = {}
        if model.config.is_encoder_decoder:
343
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
344
345
346
347
348
349
350
351
                model,
                input_ids,
                attention_mask,
                num_interleave=num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
352
353
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(num_return_sequences, dim=0)
354

355
356
357
        # prevent flaky generation test failures
        logits_processor.append(InfNanRemoveLogitsProcessor())

358
        with torch.no_grad():
359
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
Vasudev Gupta's avatar
Vasudev Gupta committed
360
            output_sample = model.sample(
361
                input_ids.repeat_interleave(num_return_sequences, dim=0),
Vasudev Gupta's avatar
Vasudev Gupta committed
362
363
364
365
366
367
368
369
                max_length=max_length,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
370
                **model_kwargs,
Vasudev Gupta's avatar
Vasudev Gupta committed
371
            )
372

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        return output_sample, output_generate

    def _beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
390
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
391
392
393
394
395
396
397
398
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
399
            remove_invalid_values=True,
400
401
            **beam_kwargs,
            **logits_process_kwargs,
402
            **model_kwargs,
403
404
405
406
407
        )

        # beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
408
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
409
410
411
412
413
414
415
416
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
417
418
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
419
420

        with torch.no_grad():
421
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
422
            output_beam_search = model.beam_search(
423
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
424
425
426
427
428
429
430
431
                beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
432
                **model_kwargs,
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
            )
        return output_generate, output_beam_search

    def _beam_sample_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        num_return_sequences,
        beam_scorer,
        beam_kwargs,
        logits_warper,
        logits_warper_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        torch.manual_seed(0)
453
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
454
455
456
457
458
459
460
461
        output_generate = model.generate(
            input_ids,
            do_sample=True,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
462
            remove_invalid_values=True,
463
464
            **beam_kwargs,
            **logits_warper_kwargs,
465
            **model_kwargs,
466
467
468
469
470
471
472
473
474
475
476
477
478
        )
        # beam_search does not automatically interleave `batch_size` dim for `num_beams * num_return_sequences`
        kwargs = {}
        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams * num_return_sequences,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
479
        elif attention_mask is not None:
480
481
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0)

482
483
484
485
        # prevent flaky generation test failures
        logits_processor = LogitsProcessorList()
        logits_processor.append(InfNanRemoveLogitsProcessor())

486
487
        torch.manual_seed(0)
        with torch.no_grad():
488
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
489
490
491
492
493
            output_beam_sample = model.beam_sample(
                input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0),
                beam_scorer,
                max_length=max_length,
                logits_warper=logits_warper,
494
                logits_processor=logits_processor,
495
496
497
498
499
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
500
                **model_kwargs,
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
            )

        return output_generate, output_beam_sample

    def _group_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        beam_scorer,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
520
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
521
522
523
524
525
526
527
528
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
529
            remove_invalid_values=True,
530
531
            **beam_kwargs,
            **logits_process_kwargs,
532
            **model_kwargs,
533
534
535
536
537
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
538
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
539
540
541
542
543
544
545
546
                model,
                input_ids,
                attention_mask,
                num_interleave=beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
547
548
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0)
549
550

        with torch.no_grad():
551
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
552
            output_group_beam_search = model.group_beam_search(
553
                input_ids.repeat_interleave(beam_scorer.num_beams, dim=0),
554
555
556
557
558
559
560
561
                beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
562
                **model_kwargs,
563
564
565
            )
        return output_generate, output_group_beam_search

566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
    def _constrained_beam_search_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        constrained_beam_scorer,
        constraints,
        beam_kwargs,
        logits_processor,
        logits_process_kwargs,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
582
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
583
584
585
586
587
588
589
590
591
592
593
594
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            max_length=max_length,
            output_scores=output_scores,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict_in_generate=return_dict_in_generate,
            remove_invalid_values=True,
            constraints=constraints,
            **beam_kwargs,
            **logits_process_kwargs,
595
            **model_kwargs,
596
597
598
599
600
        )

        # group_beam_search does not automatically interleave `batch_size` dim for `num_beams`
        kwargs = {}
        if model.config.is_encoder_decoder:
601
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
602
603
604
605
606
607
608
609
                model,
                input_ids,
                attention_mask,
                num_interleave=constrained_beam_scorer.num_beams,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs
610
611
        elif attention_mask is not None:
            attention_mask = attention_mask.repeat_interleave(constrained_beam_scorer.num_beams, dim=0)
612
613

        with torch.no_grad():
614
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
615
            output_group_beam_search = model.constrained_beam_search(
616
                input_ids.repeat_interleave(constrained_beam_scorer.num_beams, dim=0),
617
618
619
620
621
622
623
624
                constrained_beam_scorer,
                max_length=max_length,
                logits_processor=logits_processor,
                output_scores=output_scores,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
625
                **model_kwargs,
626
627
628
            )
        return output_generate, output_group_beam_search

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
    def _contrastive_generate(
        self,
        model,
        input_ids,
        attention_mask,
        max_length,
        output_scores=False,
        output_attentions=False,
        output_hidden_states=False,
        return_dict_in_generate=False,
    ):
        contrastive_search_kwargs = {
            "penalty_alpha": 0.6,
            "top_k": 5,
        }

        if model.config.is_encoder_decoder:
            max_length = 4
        logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
            input_ids.shape[-1],
            eos_token_id=model.config.eos_token_id,
            forced_bos_token_id=model.config.forced_bos_token_id,
            forced_eos_token_id=model.config.forced_eos_token_id,
            max_length=max_length,
        )

        kwargs = {}
        model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
        output_generate = model.generate(
            input_ids,
            do_sample=False,
            num_beams=1,
            max_length=max_length,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_scores=output_scores,
            return_dict_in_generate=return_dict_in_generate,
            remove_invalid_values=True,
            **logits_process_kwargs,
            **model_kwargs,
            **contrastive_search_kwargs,
        )

        if model.config.is_encoder_decoder:
            encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
                model,
                input_ids,
                attention_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            kwargs["encoder_outputs"] = encoder_outputs

        with torch.no_grad():
            model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
            stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])
            output_contrastive = model.contrastive_search(
                input_ids,
                stopping_criteria=stopping_criteria,
                logits_processor=logits_processor,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                output_scores=output_scores,
                return_dict_in_generate=return_dict_in_generate,
                **kwargs,
                **model_kwargs,
                **contrastive_search_kwargs,
            )
        return output_contrastive, output_generate

699
    def test_greedy_generate(self):
700
        # check `generate()` and `greedy_search()` are equal
701
702
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
703
704
705
706
            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
707
            )
708
            self.assertListEqual(output_greedy.tolist(), output_generate.tolist())
709

710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
    def test_greedy_generate_dict_outputs(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )
726
727

            if model.config.is_encoder_decoder:
728
729
730
731
732
                self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput)
733

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config)

    def test_greedy_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            config.use_cache = True
749
            config.is_decoder = True
750
751
752
753
            model = model_class(config).to(torch_device).eval()
            output_greedy, output_generate = self._greedy_generate(
                model=model,
                input_ids=input_ids,
754
755
                attention_mask=attention_mask,
                max_length=max_length,
756
757
758
759
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
760
            )
761

762
763
764
765
            self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist())

            for output in (output_greedy, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)
766
767
768
769

    def test_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
770
            model = model_class(config).to(torch_device).eval()
771
772
773
774

            if model.config.is_encoder_decoder:
                max_length = 4

775
776
777
778
779
780
781
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
            )
782
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=2)
783

784
785
786
787
788
            # check `generate()` and `sample()` are equal
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
789
                max_length=max_length,
790
791
792
793
794
795
796
797
798
799
800
801
                num_return_sequences=1,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
            )
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())

            # check `generate()` and `sample()` yield equal results for `num_return_sequences`
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
802
                attention_mask=attention_mask,
803
804
805
806
807
808
                max_length=max_length,
                num_return_sequences=3,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
809
            )
810
            self.assertListEqual(output_sample.tolist(), output_generate.tolist())
811

812
813
814
815
816
817
    def test_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            # disable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
            model = model_class(config).to(torch_device).eval()
818
819
820
            if model.config.is_encoder_decoder:
                max_length = 4

821
            process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
822
823
824
825
826
                input_ids.shape[-1],
                model.config.eos_token_id,
                forced_bos_token_id=model.config.forced_bos_token_id,
                forced_eos_token_id=model.config.forced_eos_token_id,
                max_length=max_length,
827
828
            )
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
829

830
831
832
            output_sample, output_generate = self._sample_generate(
                model=model,
                input_ids=input_ids,
833
                attention_mask=attention_mask,
834
835
836
837
838
839
840
841
842
843
                max_length=max_length,
                num_return_sequences=2,
                logits_processor=logits_processor,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                process_kwargs=process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
844
845
846
            )

            if model.config.is_encoder_decoder:
847
848
                self.assertIsInstance(output_sample, SampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, SampleEncoderDecoderOutput)
849
            else:
850
851
852
853
854
855
856
                self.assertIsInstance(output_sample, SampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, SampleDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_sample.sequences.tolist())

            for output in (output_sample, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=2)
857
858
859
860

    def test_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
861
862
863
864
865

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
866
            config.forced_eos_token_id = None
867

868
            model = model_class(config).to(torch_device).eval()
869
870
            if model.config.is_encoder_decoder:
                max_length = 4
871
872

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
873
874
875
876
877
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
878
879
            )
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
880
881
882
883
884

            # check `generate()` and `beam_search()` are equal
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
885
886
                attention_mask=attention_mask,
                max_length=max_length,
887
888
889
890
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
891
            )
892

893
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
894
895
896
897
898
899
900
901
902

            # check `generate()` and `beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )

903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

    def test_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
918
919

            # disable cache
920
            config.use_cache = False
921
922
923
924
925

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
926
            config.forced_eos_token_id = None
927

928
929
930
            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
931
932
933
934
935
936
937
938

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )
939
940
941
942
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
            output_generate, output_beam_search = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
943
944
                attention_mask=attention_mask,
                max_length=max_length,
945
946
947
948
949
950
951
952
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
953
954
            )
            if model.config.is_encoder_decoder:
955
956
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
957
            else:
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

    def test_beam_search_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

976
977
978
979
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
980
            config.forced_eos_token_id = None
981

982
983
984
985
986
            if not hasattr(config, "use_cache"):
                # only relevant if model has "use_cache"
                return

            model = model_class(config).to(torch_device).eval()
987
988
            if model.config.is_encoder_decoder:
                max_length = 4
989
990

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
991
992
993
994
995
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
996
997
998
999
1000
            )

            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length)

            config.use_cache = True
1001
            config.is_decoder = True
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
            model = model_class(config).to(torch_device).eval()
            output_beam, output_generate = self._beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_process_kwargs=logits_process_kwargs,
                logits_processor=logits_processor,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_beam.sequences.tolist())

            for output in (output_beam, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, use_cache=True, num_return_sequences=beam_scorer.num_beams
1023
1024
1025
1026
1027
                )

    def test_beam_sample_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1028
1029
1030
1031
1032

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1033
            config.forced_eos_token_id = None
1034

1035
1036
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

1037
            model = model_class(config).to(torch_device).eval()
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047

            # check `generate()` and `beam_search()` are equal
            # change `num_return_sequences = 2` but not for `beam_scorer`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences
1048
1049
1050
1051

            output_generate, output_beam_sample = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
1052
1053
                attention_mask=attention_mask,
                max_length=max_length,
1054
1055
1056
1057
1058
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
1059
            )
1060
1061
1062
1063
1064
            self.assertListEqual(output_generate.tolist(), output_beam_sample.tolist())

    def test_beam_sample_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
1065
1066

            # disable cache
1067
            config.use_cache = False
1068
1069
1070
1071
1072

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1073
            config.forced_eos_token_id = None
1074

1075
1076
1077
1078
            model = model_class(config).to(torch_device).eval()
            logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)

            num_return_sequences = 2
1079
            if model.config.is_encoder_decoder:
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
                max_length = 4
            beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(
                input_ids.shape[0] * num_return_sequences, max_length
            )
            beam_kwargs["num_return_sequences"] = num_return_sequences

            output_beam_sample, output_generate = self._beam_sample_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                num_return_sequences=num_return_sequences,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_warper=logits_warper,
                logits_warper_kwargs=logits_warper_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
1103
1104
                self.assertIsInstance(output_beam_sample, BeamSampleEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput)
1105
            else:
1106
1107
                self.assertIsInstance(output_beam_sample, BeamSampleDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput)
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_sample.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_sample["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_sample, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
1119
1120
                )

1121
1122
    def test_generate_without_input_ids(self):
        config, _, _, max_length = self._get_input_ids_and_config()
1123

1124
1125
1126
        # if no bos token id => cannot generate from None
        if config.bos_token_id is None:
            return
1127

1128
1129
1130
        for model_class in self.all_generative_model_classes:
            model = model_class(config).to(torch_device)
            model.eval()
1131

1132
            output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
1133
            self.assertIsNotNone(output_ids_generate)
1134

1135
1136
1137
1138
    def test_group_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

1139
1140
1141
1142
            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1143
1144
1145
1146
1147
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 4
1148

1149
            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1150
1151
1152
1153
1154
1155
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1156
1157
1158
1159
            )

            # check `generate()` and `group_beam_search()` are equal
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length)
1160
1161
1162
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1163
1164
                attention_mask=attention_mask,
                max_length=max_length,
1165
1166
1167
1168
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
1169
            )
1170
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1171
1172
1173
1174
1175
1176
1177
1178

            # check `generate()` and `group_beam_search()` are equal for `num_return_sequences`
            num_return_sequences = 2
            if model.config.is_encoder_decoder:
                max_length = 4
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist())
1190

1191
1192
1193
1194
    def test_group_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            config.use_cache = False
1195
1196
1197
1198
1199

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
1200
            config.forced_eos_token_id = None
1201

1202
            model = model_class(config).to(torch_device).eval()
1203
1204
            if model.config.is_encoder_decoder:
                max_length = 4
1205
1206

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
1207
1208
1209
1210
1211
1212
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
                diversity_penalty=2.0,
1213
1214
1215
1216
1217
1218
1219
1220
1221
            )

            num_return_sequences = 1
            beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, num_return_sequences=num_return_sequences
            )
            output_generate, output_group_beam_search = self._group_beam_search_generate(
                model=model,
                input_ids=input_ids,
1222
1223
                attention_mask=attention_mask,
                max_length=max_length,
1224
1225
1226
1227
1228
1229
1230
1231
                beam_scorer=beam_scorer,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
1232
1233
            )
            if model.config.is_encoder_decoder:
1234
1235
                self.assertIsInstance(output_group_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
1236
            else:
1237
1238
1239
1240
1241
1242
1243
                self.assertIsInstance(output_group_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_group_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(
                    output_generate["sequences_scores"], output_group_beam_search["sequences_scores"], atol=1e-3
1244
                )
1245
1246
1247
1248
1249
1250
1251
1252
1253
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_group_beam_search, output_generate):
                self._check_outputs(
                    output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams
                )

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
    def test_constrained_beam_search_generate(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            max_length = 20

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )

            # check `generate()` and `constrained_beam_search()` are equal
            # Sample constraints
            if not input_ids.dtype == torch.float32:
                min_id = torch.min(input_ids) + 3
                max_id = torch.max(input_ids)
            else:
                # otherwise this throws an error for Speech2TextModel since its inputs are floating points
                min_id = 3
                max_id = 100

1285
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=1
            )
            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())
            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

            # check `generate()` and `constrained_beam_search()` are equal for `num_return_sequences`
            # Sample constraints
1310
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            num_return_sequences = 2
            max_length = 20

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=num_return_sequences
            )

            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
            )
            self.assertListEqual(output_generate.tolist(), output_beam_search.tolist())

            for generation_output in output_generate:
                self._check_sequence_inside_sequence(force_tokens, generation_output)

    def test_constrained_beam_search_generate_dict_output(self):
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # disable cache
            config.use_cache = False

            # It is important set set the eos_token_id to None to ensure that no sequences
            # shorter than `max_length` can be generated which could lead to flaky circle ci
            # failures if the top `num_return_sequences` beams are all shorter than the longest beam
            config.eos_token_id = None
            config.forced_eos_token_id = None

            model = model_class(config).to(torch_device).eval()
            if model.config.is_encoder_decoder:
                max_length = 20

            logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
                input_ids.shape[-1],
                config.eos_token_id,
                config.forced_bos_token_id,
                config.forced_eos_token_id,
                max_length,
            )

            # Sample constraints
1364
1365
            min_id = 3
            max_id = model.config.vocab_size
1366
            force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0]
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
            constraints = [
                PhrasalConstraint(force_tokens),
            ]

            beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs(
                input_ids.shape[0], max_length, constraints, num_return_sequences=1
            )
            output_generate, output_beam_search = self._constrained_beam_search_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                constrained_beam_scorer=beam_scorer,
                constraints=constraints,
                beam_kwargs=beam_kwargs,
                logits_processor=logits_processor,
                logits_process_kwargs=logits_process_kwargs,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            if model.config.is_encoder_decoder:
                self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput)
                self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput)
            else:
                self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput)
                self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput)

            self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist())
            self.assertTrue(
                torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3)
            )
            self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],))
            self.assertTrue((output_generate["sequences_scores"] < 0).all().item())

            for output in (output_beam_search, output_generate):
                self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams)

1407
1408
1409
1410
    def test_contrastive_generate(self):
        # check `generate()` and `contrastive_search()` are equal
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1411
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
                return

            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                return
            config.use_cache = True
            config.is_decoder = True

            # test old generation output for backwards compatibility
            model = model_class(config).to(torch_device).eval()
            output_contrastive, output_generate = self._contrastive_generate(
                model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length
            )
            self.assertListEqual(output_contrastive.tolist(), output_generate.tolist())

    def test_contrastive_generate_dict_outputs_use_cache(self):
        for model_class in self.all_generative_model_classes:
            # won't fix: FSMT and Reformer have a different cache variable type (and format).
1432
            if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]):
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
                return

            # enable cache
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()

            # NOTE: contrastive search only works with cache on at the moment.
            if not hasattr(config, "use_cache"):
                return
            config.use_cache = True
            config.is_decoder = True

            model = model_class(config).to(torch_device).eval()
            output_contrastive, output_generate = self._contrastive_generate(
                model=model,
                input_ids=input_ids,
                attention_mask=attention_mask,
                max_length=max_length,
                output_scores=True,
                output_hidden_states=True,
                output_attentions=True,
                return_dict_in_generate=True,
            )

            self.assertListEqual(output_generate.sequences.tolist(), output_contrastive.sequences.tolist())

            for output in (output_contrastive, output_generate):
                self._check_outputs(output, input_ids, model.config, use_cache=True)

1461
1462
1463
1464
1465
1466
1467
1468
    def test_generate_with_head_masking(self):
        """Test designed for encoder-decoder models to ensure the attention head masking is used."""
        attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"]
        for model_class in self.all_generative_model_classes:
            config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
            # We want to test only encoder-decoder models
            if not config.is_encoder_decoder:
                continue
Joao Gante's avatar
Joao Gante committed
1469
            model = model_class(config).to(torch_device)
1470
1471

            head_masking = {
1472
1473
1474
1475
1476
1477
1478
                "head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device),
                "decoder_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
                "cross_attn_head_mask": torch.zeros(
                    config.decoder_layers, config.decoder_attention_heads, device=torch_device
                ),
1479
1480
1481
1482
            }

            signature = inspect.signature(model.forward)
            # We want to test only models where encoder/decoder head masking is implemented
1483
            if not set(head_masking.keys()) < {*signature.parameters.keys()}:
1484
1485
1486
1487
1488
                continue

            for attn_name, (name, mask) in zip(attention_names, head_masking.items()):
                out = model.generate(
                    input_ids,
1489
                    attention_mask=attention_mask,
1490
1491
1492
                    num_beams=1,
                    output_attentions=True,
                    return_dict_in_generate=True,
1493
                    remove_invalid_values=True,
1494
1495
1496
1497
1498
1499
                    **{name: mask},
                )
                # We check the state of decoder_attentions and cross_attentions just from the last step
                attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
                self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0)

1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
    # TODO (joao): this test is actually not slow :) However, it is not passing in some models (e.g. GPTNeoX) and the
    # fix for some models is quite lengthy. Being slow means it doesn't block our push CI while we fix it.
    @slow
    def test_left_padding_compatibility(self):
        # The check done in this test is fairly difficult -- depending on the model architecture, passing the right
        # position index for the position embeddings can still result in a different output, due to numerical masking.
        # On the other hand, for some types of position embeddings, an incorrect position index can have a minimal
        # impact on the output.
        # There are two tricks employed to check whether left-padding compatibility is in place:
        # 1 - To reduce the negative impact of the numerical attention mask on a correct position index, we set the
        # padding size to 1.
        # 2 - To reduce the chance of false positives (i.e. passing when it should be failing), we run the check
        # multiple times with random inputs, and it has to pass with all of them.
        # NOTE: because of 2), there is some chance of false positives in this test.

        for model_class in self.all_generative_model_classes:
            config, _, _, _ = self._get_input_ids_and_config()
            if config.is_encoder_decoder:
                continue  # skip for encoder-decoder models -- they don't need left-padding compatibility
            model = model_class(config).to(torch_device).eval()
            signature = inspect.signature(model.forward).parameters.keys()

            no_failures = True
            for _ in range(10):  # there may be false positives with 10 runs, we rely on the CI to catch the flakiness
                _, input_ids, attention_mask, _ = self._get_input_ids_and_config()
                model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
                if "position_ids" in signature:
                    position_ids = torch.cumsum(attention_mask, dim=-1) - 1
                    position_ids.masked_fill_(attention_mask == 0, 1)
                    model_kwargs["position_ids"] = position_ids
                next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :]

                pad_size = (input_ids.shape[0], 1)
                padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id
                padded_input_ids = torch.cat((padding, input_ids), dim=1)
                padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
                model_kwargs = {"input_ids": padded_input_ids, "attention_mask": padded_attention_mask}
                if "position_ids" in signature:
                    position_ids = torch.cumsum(padded_attention_mask, dim=-1) - 1
                    position_ids.masked_fill_(padded_attention_mask == 0, 1)
                    model_kwargs["position_ids"] = position_ids
                next_logits_with_padding = model(**model_kwargs).logits[:, -1, :]
                if not torch.allclose(next_logits_wo_padding, next_logits_with_padding):
                    no_failures = False
                    break

            self.assertTrue(no_failures)

1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
    def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1):
        batch_size, seq_length = input_ids.shape
        num_sequences_in_output = batch_size * num_return_sequences
        gen_len = (
            output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
        )

        # scores
        self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config)

        # Attentions
        if config.is_encoder_decoder:
            # encoder
1561
            self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length)
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
            # decoder
            self._check_attentions_for_generate(
                num_sequences_in_output,
                output.decoder_attentions,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            attentions = output.attentions if not use_cache else output.attentions[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_attentions_for_generate(
                num_sequences_in_output,
                attentions=attentions,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

        # Hidden States
        if config.is_encoder_decoder:
            # encoder
1587
1588
            self._check_encoder_hidden_states_for_generate(
                output.encoder_hidden_states, batch_size, config, seq_length
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
            )

            # decoder
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                output.decoder_hidden_states,
                min_length=1,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )
        else:
            # if use_cache first input is equal to no use_cache, so skip here
            hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
            min_length = seq_length if not use_cache else seq_length + 1
            self._check_hidden_states_for_generate(
                num_sequences_in_output,
                hidden_states,
                min_length=min_length,
                max_length=output.sequences.shape[-1],
                config=config,
                use_cache=use_cache,
            )

    def _check_scores(self, batch_size, scores, length, config):
        expected_shape = (batch_size, config.vocab_size)
        self.assertIsInstance(scores, tuple)
        self.assertEqual(len(scores), length)
        self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores))

    def _check_attentions_for_generate(
        self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions)
        )
        self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups)

        for idx, iter_attentions in enumerate(attentions):
            tgt_len = min_length + idx if not use_cache else 1
            src_len = min_length + idx

            expected_shape = (
                batch_size * num_beam_groups,
                config.num_attention_heads,
                tgt_len,
                src_len,
            )
            # check attn size
            self.assertListEqual(
                [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions)
            )

1643
1644
1645
1646
1647
1648
1649
1650
    def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length)
        self.assertIsInstance(attentions, tuple)
        self.assertListEqual(
            [layer_attentions.shape for layer_attentions in attentions],
            [encoder_expected_shape] * len(attentions),
        )

1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
    def _check_hidden_states_for_generate(
        self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1
    ):
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states],
            [True] * len(hidden_states),
        )
        self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups)

        for idx, iter_hidden_states in enumerate(hidden_states):
            seq_len = min_length + idx if not use_cache else 1
            expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size)
            # check hidden size
            self.assertListEqual(
                [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states],
                [expected_shape] * len(iter_hidden_states),
            )
1669

1670
1671
1672
1673
1674
1675
1676
1677
    def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length):
        encoder_expected_shape = (batch_size, seq_length, config.hidden_size)
        self.assertIsInstance(hidden_states, tuple)
        self.assertListEqual(
            [layer_hidden_states.shape for layer_hidden_states in hidden_states],
            [encoder_expected_shape] * len(hidden_states),
        )

1678
    def _check_sequence_inside_sequence(self, tensor_1, tensor_2):
1679
        # check if tensor_1 inside tensor_2 or tensor_2 inside tensor_1.
1680
1681
        # set to same device. we don't care what device.

1682
1683
1684
1685
1686
1687
        if not isinstance(tensor_1, list):
            tensor_1 = tensor_1.cpu().tolist()
        if not isinstance(tensor_2, list):
            tensor_2 = tensor_2.cpu().tolist()

        in_order = len(tensor_1) <= len(tensor_2)
1688
1689
1690
1691
        longer = tensor_2 if in_order else tensor_1
        shorter = tensor_1 if in_order else tensor_2

        flag = False
1692
1693
        chunk_size = len(shorter)
        for chunk_idx in range(len(longer) - chunk_size + 1):
1694
            subseq = longer[chunk_idx : chunk_idx + chunk_size]
1695
            if subseq == shorter:
1696
1697
1698
1699
1700
                flag = True
                break

        self.assertTrue(flag)

1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

@require_torch
class UtilsFunctionsTest(unittest.TestCase):
    # tests whether the top_k_top_p function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 4 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 4 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))
1804

1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
    # tests whether the function uses filter_value instead of default -inf
    def test_top_k_top_p_filtering_with_filter_value(self):
        logits = torch.tensor(
            [
                [
                    1,
                    1,
                    1,
                    0.99,  # get filtered by top-p filtering
                    0.98,  # get filtered by top-k filtering
                ]
            ],
            dtype=torch.float,
            device=torch_device,
        )

        expected_output = torch.tensor(
            [[1, 1, 1, 0, 0]],
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=4, top_p=0.5, filter_value=0.0)

        self.assertTrue(torch.allclose(expected_output, output, atol=1e-12))

1831
1832

@require_torch
1833
1834
1835
1836
class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_torch_available():
        framework_dependent_parameters = {
1837
            "AutoModelForCausalLM": AutoModelForCausalLM,
1838
            "AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq,
1839
            "AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM,
1840
            "AutoModelForVision2Seq": AutoModelForVision2Seq,
1841
1842
            "LogitsProcessorList": LogitsProcessorList,
            "MinLengthLogitsProcessor": MinLengthLogitsProcessor,
1843
            "create_tensor_fn": torch.tensor,
1844
            "floats_tensor": floats_tensor,
1845
1846
1847
            "return_tensors": "pt",
        }

1848
1849
    @slow
    def test_diverse_beam_search(self):
1850
        # PT-only test: TF doesn't have a diverse beam search implementation
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood.
        The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People.
        "Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports.
        The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both."""

        bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
        bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        outputs = bart_model.generate(
1861
1862
1863
1864
1865
1866
            input_ids,
            num_beams=4,
            num_return_sequences=2,
            num_beam_groups=4,
            diversity_penalty=2.0,
            remove_invalid_values=True,
1867
1868
1869
1870
1871
1872
1873
        )

        generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
Sylvain Gugger's avatar
Sylvain Gugger committed
1874
1875
1876
1877
1878
1879
                "The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the"
                " middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle"
                " name, as well as his father's first. It is the first baby for both of them.",
                "Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the"
                " first child for both. The couple announced the pregnancy in January. The name Silas is the middle"
                " name of Timberlake's maternal grandfather. It's also his own middle name.",
1880
1881
            ],
        )
1882
1883

    def test_max_length_backward_compat_greedy(self):
1884
        # PT-only test: TF doesn't have StoppingCriteria
1885
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1886
1887
1888
1889
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1890
1891
1892
1893
1894
1895
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1896
            input_ids.shape[0],
1897
1898
1899
1900
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

1901
1902
1903
1904
1905
1906
1907
1908
        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )
1909
1910

    def test_max_length_backward_compat_sample(self):
1911
        # PT-only test: TF doesn't have StoppingCriteria
1912
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1913
1914
1915
1916
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1917
1918
1919
1920
1921
1922
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        max_length = 20
        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1923
            input_ids.shape[0],
1924
1925
1926
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )
1927
        with torch.no_grad():
1928
1929
1930
1931
1932
1933
1934
1935
            with self.assertWarns(UserWarning):
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
1936
1937

    def test_max_length_backward_compat_beam_search(self):
1938
        # PT-only test: TF doesn't have StoppingCriteria
1939
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1940
1941
1942
1943
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1944
1945
1946
1947
1948
1949
1950
1951
1952
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 2

        input_ids = input_ids.expand(2, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1953
            input_ids.shape[0],
1954
1955
1956
1957
1958
1959
1960
1961
1962
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
1963
1964
1965
1966
        with self.assertWarns(UserWarning):
            _ = bart_model.beam_search(
                input_ids, num_beams=num_beams, max_length=max_length, beam_scorer=beam_scorer, **model_kwargs
            )
1967
1968

    def test_max_length_backward_compat_group_beam_search(self):
1969
        # PT-only test: TF doesn't have StoppingCriteria & group beam search
1970
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
1971
1972
1973
1974
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1
        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size

        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
1986
            input_ids.shape[0],
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
1998
1999
2000
2001
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids, diverse_beam_scorer, num_beams=num_beams, max_length=max_length, **model_kwargs
            )
2002
2003

    def test_max_length_warning_if_different(self):
2004
        # PT-only test: TF doesn't have StoppingCriteria
2005
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
2006
2007
2008
2009
        bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        batch_size = 1

        max_length = 20
        num_beams = 6
        num_beam_groups = 3
        num_return_sequences = num_beams * batch_size
        stopping_criteria_max_length = 18
        stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)])

        # Greedy
        input_ids = input_ids.expand(6, -1)
        model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {})
        input_ids = bart_model._prepare_decoder_input_ids_for_generation(
2025
            input_ids.shape[0],
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
            decoder_start_token_id=bart_model.config.decoder_start_token_id,
            bos_token_id=bart_model.config.bos_token_id,
        )

        with self.assertWarns(UserWarning):
            bart_model.greedy_search(
                input_ids,
                max_length=max_length,
                pad_token_id=bart_model.config.pad_token_id,
                stopping_criteria=stopping_criteria,
                eos_token_id=bart_model.config.eos_token_id,
                **model_kwargs,
            )

        # Sample
        with self.assertWarns(UserWarning):
2042
2043
2044
2045
2046
2047
2048
2049
2050
            with torch.no_grad():
                bart_model.sample(
                    input_ids,
                    max_length=max_length,
                    stopping_criteria=stopping_criteria,
                    pad_token_id=bart_model.config.pad_token_id,
                    eos_token_id=bart_model.config.eos_token_id,
                    **model_kwargs,
                )
2051
2052
2053
2054
2055
2056
2057
2058

        # Beam
        beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
        )
        with self.assertWarns(UserWarning):
2059
2060
2061
2062
2063
2064
2065
2066
2067
            with torch.no_grad():
                bart_model.beam_search(
                    input_ids,
                    num_beams=num_beams,
                    stopping_criteria=stopping_criteria,
                    max_length=max_length,
                    beam_scorer=beam_scorer,
                    **model_kwargs,
                )
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085

        # Grouped beam search
        diverse_beam_scorer = BeamSearchScorer(
            batch_size=batch_size,
            num_beams=num_beams,
            device=torch_device,
            num_beam_hyps_to_keep=num_return_sequences,
            num_beam_groups=num_beam_groups,
        )
        with self.assertWarns(UserWarning):
            bart_model.group_beam_search(
                input_ids,
                diverse_beam_scorer,
                stopping_criteria=stopping_criteria,
                num_beams=num_beams,
                max_length=max_length,
                **model_kwargs,
            )
2086

2087
    def test_custom_stopping_criteria_overload_error(self):
2088
        # PT-only test: TF doesn't have StoppingCriteria
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)

        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(MaxLengthCriteria(max_length=42))
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria)
        with self.assertRaises(ValueError):
            bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32)

    def test_custom_stopping_criteria(self):
2102
        # PT-only test: TF doesn't have StoppingCriteria
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
        article = """Justin Timberlake and Jessica Biel, welcome to parenthood."""
        bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random")
        bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device)
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)

        class DummyCriteria(StoppingCriteria):
            def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
                return input_ids.shape[-1] >= 20

        stopping_criteria = StoppingCriteriaList()
        stopping_criteria.append(DummyCriteria())

        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape),
            [1, 20],
        )
        self.assertEqual(
            list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape),
            [1, 18],
        )

2124
    def test_stop_sequence_stopping_criteria(self):
2125
        # PT-only test: TF doesn't have StoppingCriteria
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
        prompt = """Hello I believe in"""
        generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart")
        output = generator(prompt)
        self.assertEqual(
            output,
            [
                {
                    "generated_text": (
                        "Hello I believe in in in number number number number number number number number number"
                    )
                }
            ],
        )

        output = generator(prompt, stop_sequence=" number")
        self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}])

2143
    def test_generate_non_nlp_input_ids_as_kwarg(self):
2144
        # PT-only test: AFAIK there's no non-NLP model architecture in TF that supports `input_ids` as its only input
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
        model = ImageGPTForCausalImageModeling.from_pretrained(
            "hf-internal-testing/tiny-random-imagegpt", max_length=10
        ).to(torch_device)
        input_ids = ids_tensor((3, 5), vocab_size=10)

        output_sequences_kwargs = model.generate(input_ids=input_ids).cpu()
        output_sequences = model.generate(input_ids).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (3, 10))

2156
    def test_generate_input_values_as_encoder_kwarg(self):
2157
        # PT-only test: AFAIK there's no generate-capable architecture in TF that supports `input_values` as its input
2158
2159
2160
2161
2162
2163
2164
2165
2166
        input_values = floats_tensor((2, 250))
        model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder")
        model = model.to(torch_device)
        output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu()
        output_sequences = model.generate(input_values, max_length=5).cpu()

        self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist())
        self.assertEqual(output_sequences.shape, (2, 5))

2167
    def test_transition_scores_group_beam_search_encoder_decoder(self):
2168
        # PT-only test: TF doesn't have group beam search
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
        articles = [
            "Justin Timberlake and Jessica Biel, welcome to parenthood.",
            "Michael Phelps is arguably the most decorated Olympian of all time.",
        ]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained(
            "hf-internal-testing/tiny-random-bart",
            max_length=10,
            num_beams=2,
            num_beam_groups=2,
            num_return_sequences=2,
            eos_token_id=None,
            return_dict_in_generate=True,
            output_scores=True,
            length_penalty=0.0,
        )
        model = model.to(torch_device)

        input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device)
        outputs = model.generate(input_ids=input_ids)

2190
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices)
2191
2192
2193
        transition_scores_sum = transition_scores.sum(-1)

        self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3))
2194

2195
2196
    @slow
    def test_beam_search_example_integration(self):
2197
        # PT-only test: TF doesn't have a BeamSearchScorer
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
        # exactly the example provided in the docstrings of beam search, which previously
        # failed after directly copying from it. Refer to PR #15555
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 3 beams
        num_beams = 3
        # define decoder start token ids
        input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
        model_kwargs = {
            "encoder_outputs": model.get_encoder()(
                encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
            )
        }

        # instantiate beam scorer
        beam_scorer = BeamSearchScorer(
            batch_size=1,
            num_beams=num_beams,
            device=model.device,
        )

        # instantiate logits processors
        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
            ]
        )

        outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs)
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(outputs, ["Wie alt bist du?"])

2238
2239
    @slow
    def test_constrained_beam_search(self):
2240
        # PT-only test: TF doesn't have constrained beam search
2241
2242
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2243

2244
2245
        force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270

        constraints = [
            PhrasalConstraint(force_tokens),
            PhrasalConstraint(force_tokens_2),
        ]

        starting_text = ["The soldiers were not prepared and"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            max_length=30,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2271
2272
                "The soldiers were not prepared and didn't know what to do. They had no idea how they would react if"
                " the enemy attacked them, big weapons scared"
2273
2274
2275
            ],
        )

2276
2277
    @slow
    def test_constrained_beam_search_mixed(self):
2278
        # PT-only test: TF doesn't have constrained beam search
2279
2280
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310

        force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids
        flexible_phrases = tokenizer(
            ["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False
        ).input_ids

        constraints = [
            PhrasalConstraint(force_phrase),
            DisjunctiveConstraint(flexible_phrases),
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            constraints=constraints,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            # max_length=20,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2311
2312
2313
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2314
2315
2316
2317
2318
            ],
        )

    @slow
    def test_constrained_beam_search_mixed_mixin(self):
2319
        # PT-only test: TF doesn't have constrained beam search
2320
2321
        model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device)
        tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348

        force_word = "scared"
        force_flexible = ["scream", "screams", "screaming", "screamed"]

        force_words_ids = [
            tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids,
            tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids,
        ]

        starting_text = ["The soldiers", "The child"]

        input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device)

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)

        self.assertListEqual(
            generated_text,
            [
2349
2350
2351
                "The soldiers, who had been stationed at the base for more than a year before being evacuated"
                " screaming scared",
                "The child was taken to a local hospital where he died.\n 'I don't think screaming scared",
2352
2353
2354
2355
2356
            ],
        )

    @slow
    def test_constrained_beam_search_example_translation_mixin(self):
2357
        # PT-only test: TF doesn't have constrained beam search
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        force_words = ["sind"]

        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids
        force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids

        outputs = model.generate(
            input_ids,
            force_words_ids=force_words_ids,
            num_beams=10,
            num_return_sequences=1,
            no_repeat_ngram_size=1,
            remove_invalid_values=True,
        )

        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2378
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2379

2380
2381
    @slow
    def test_constrained_beam_search_example_integration(self):
2382
        # PT-only test: TF doesn't have constrained beam search
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
        tokenizer = AutoTokenizer.from_pretrained("t5-base")
        model = AutoModelForSeq2SeqLM.from_pretrained("t5-base")

        encoder_input_str = "translate English to German: How old are you?"
        encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        # lets run beam search using 5 beams
        num_beams = 5
        # define decoder start token ids
        input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long)
        input_ids = input_ids * model.config.decoder_start_token_id

        # add encoder_outputs to model keyword arguments
        model_kwargs = {
            "encoder_outputs": model.get_encoder()(
                encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True
            )
        }

        constraint_str = "sind"
        constraint_token_ids = tokenizer.encode(constraint_str)[:-1]  # remove eos token
        constraints = [PhrasalConstraint(token_ids=constraint_token_ids)]

        # instantiate beam scorer
        beam_scorer = ConstrainedBeamSearchScorer(
            batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints
        )

        # instantiate logits processors
        logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id),
            ]
        )

        outputs = model.constrained_beam_search(
            input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs
        )
        outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)

2423
        self.assertListEqual(outputs, ["Wie alt sind Sie?"])
2424
2425

    def test_constrained_beam_search_mixin_type_checks(self):
2426
        # PT-only test: TF doesn't have constrained beam search
2427
2428
        tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random")
        model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random")
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464

        encoder_input_str = "translate English to German: How old are you?"
        input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            force_words = ["sind"]
            force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids]
            model.generate(
                input_ids,
                force_words_ids=force_words_ids,
                num_beams=10,
                num_return_sequences=1,
                no_repeat_ngram_size=1,
                remove_invalid_values=True,
            )

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[-1]])

        with self.assertRaises(ValueError):
            model.generate(input_ids, force_words_ids=[[[-1]]])
2465

2466
    def test_contrastive_search_batched(self):
2467
        # PT-only test: TF doesn't have constrained beam search
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
        # Tests that contrastive search works with batched inputs (i.e. has the same output as for non-batched inputs)
        articles = ["Foo", "Bar Baz"]
        tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)

        model.config.eos_token_id = None
        input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device)
        input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device)

        output_sequences_batched = model.generate(
            input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )
        output_sequences = model.generate(
            input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True
        )

        batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True)
        out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True)
        self.assertEqual(batched_out, out)

        # output_sequences_batched.scores[0][1] -> 1st set of logits, 2nd sequence
        max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max()
        self.assertTrue(max_score_diff < 1e-5)

2492
    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
2493
        # Has TF equivalent: this test relies on random sampling
2494
2495
2496
2497
2498
2499
2500
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
2501
        expectation = 20
2502

2503
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
2504
        text = """Hello, my dog is cute and"""
2505
        tokens = tokenizer(text, return_tensors="pt").to(torch_device)
2506
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
2507
2508
2509
2510
2511
2512
2513

        torch.manual_seed(0)
        eos_token_id = 846
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

        torch.manual_seed(0)
2514
        eos_token_id = [846, 198]
2515
2516
        generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))
2517
2518

    def test_generate_from_inputs_embeds_decoder_only(self):
2519
        # PT-only test: TF doesn't have a model with support to generate from input embeds (yet ;))
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
        # Note: the model must support generation from input embeddings
        model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        model.config.pad_token_id = tokenizer.eos_token_id

        text = "Hello world"
        tokenized_inputs = tokenizer([text, text], return_tensors="pt")
        input_ids = tokenized_inputs.input_ids.to(torch_device)

        # Traditional way of generating text
        outputs_from_ids = model.generate(input_ids)
        self.assertEqual(outputs_from_ids.shape, (2, 20))

        # Same thing, but from input embeddings
        inputs_embeds = model.transformer.wte(input_ids)
        outputs_from_embeds = model.generate(input_ids, inputs_embeds=inputs_embeds)
        self.assertListEqual(outputs_from_ids.tolist(), outputs_from_embeds.tolist())

        # But if we pass different inputs_embeds, we should get different outputs
        torch.manual_seed(0)
        random_embeds = torch.rand_like(inputs_embeds)
        outputs_from_rand_embeds = model.generate(input_ids, inputs_embeds=random_embeds)
        with self.assertRaises(AssertionError):
            self.assertListEqual(outputs_from_rand_embeds.tolist(), outputs_from_embeds.tolist())

        # input_ids is not a required input -- if we don't pass it, the newly generated tokens will be the same
        outputs_from_embeds_wo_ids = model.generate(
            inputs_embeds=inputs_embeds, max_new_tokens=20 - inputs_embeds.shape[1]
        )
        self.assertListEqual(
            outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(),
            outputs_from_embeds_wo_ids[:, 1:].tolist(),
        )
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589

    def test_model_kwarg_encoder_signature_filtering(self):
        # Has TF equivalent: ample use of framework-specific code
        bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart")
        article = """Hugging Face is a technology company based in New York and Paris."""
        input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device)
        bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(
            torch_device
        )
        output = bart_model.generate(input_ids).cpu().numpy()

        # Let's create a fake model that has a different signature. In particular, this fake model accepts "foo" as an
        # argument. Because "foo" is not in the encoder signature and doesn't start with "decoder_", it will be part of
        # the encoder kwargs prior to signature filtering, which would lead to an exception. But filtering kicks in and
        # saves the day.
        class FakeBart(BartForConditionalGeneration):
            def forward(self, input_ids, foo=None, **kwargs):
                return super().forward(input_ids, **kwargs)

        bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device)
        fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy()
        self.assertTrue(np.array_equal(output, fake_output))

        # Encoder signature filtering only kicks in if it doesn't accept wildcard kwargs. The following test will fail
        # because it doesn't do signature filtering.
        class FakeEncoder(bart_model.model.encoder.__class__):
            def forward(self, input_ids, **kwargs):
                return super().forward(input_ids, **kwargs)

        fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device)
        bart_model.model.encoder = fake_encoder

        # Normal generation still works (the output will be different because the encoder weights are different)
        fake_output = bart_model.generate(input_ids).cpu().numpy()
        with self.assertRaises(TypeError):
            # FakeEncoder.forward() accepts **kwargs -> no filtering -> type error due to unexpected input "foo"
            bart_model.generate(input_ids, foo="bar")