modeling_openai.py 37.1 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

18
19
from __future__ import absolute_import, division, print_function, unicode_literals

20
import collections
thomwolf's avatar
thomwolf committed
21
import json
thomwolf's avatar
thomwolf committed
22
import logging
23
24
import math
import os
thomwolf's avatar
thomwolf committed
25
26
import sys
from io import open
thomwolf's avatar
thomwolf committed
27
28
29

import torch
import torch.nn as nn
thomwolf's avatar
thomwolf committed
30
from torch.nn import CrossEntropyLoss
thomwolf's avatar
thomwolf committed
31
32
from torch.nn.parameter import Parameter

33
from .modeling_utils import (Conv1D, CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig,
34
                             PreTrainedModel, prune_conv1d_layer, SequenceSummary)
thomwolf's avatar
thomwolf committed
35
from .modeling_bert import BertLayerNorm as LayerNorm
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
38
logger = logging.getLogger(__name__)

39
40
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}
OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-config.json"}
41

42

43
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
44
45
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
46
47
    import re
    import numpy as np
48
49
50
51
52
53

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

54
55
56
57
58
59
60
    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

thomwolf's avatar
thomwolf committed
61
    # This was used when we had a single embedding matrix for positions and tokens
62
63
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
64
65
66
    init_params = [arr.squeeze() for arr in init_params]

    try:
67
68
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
69
    except AssertionError as e:
70
71
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
72
73
        raise

74
75
    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
76
    names.pop(0)
77
78
    # Pop position and token embedding arrays
    init_params.pop(0)
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
113
        logger.info("Initialize PyTorch weight {}".format(name))
114
115
116
        pointer.data = torch.from_numpy(array)
    return model

thomwolf's avatar
thomwolf committed
117
118
119
120
121
122
123
124
125

def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


126
127
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}

thomwolf's avatar
thomwolf committed
128

129
class OpenAIGPTConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
130
131
    """Configuration class to store the configuration of a `OpenAIGPTModel`.
    """
132
    pretrained_config_archive_map = OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP
133
134
135
136
137

    def __init__(
        self,
        vocab_size_or_config_json_file=40478,
        n_special=0,
thomwolf's avatar
thomwolf committed
138
        n_positions=512,
139
140
141
142
143
144
145
146
        n_ctx=512,
        n_embd=768,
        n_layer=12,
        n_head=12,
        afn="gelu",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
147
        layer_norm_epsilon=1e-5,
148
        initializer_range=0.02,
thomwolf's avatar
thomwolf committed
149
        predict_special_tokens=True,
thomwolf's avatar
thomwolf committed
150
151

        num_labels=1,
thomwolf's avatar
thomwolf committed
152
153
154
        summary_type='token_ids',
        summary_use_proj=True,
        summary_activation=None,
thomwolf's avatar
thomwolf committed
155
        summary_proj_to_labels=True,
156
        summary_first_dropout=0.1,
thomwolf's avatar
thomwolf committed
157
        **kwargs
158
    ):
thomwolf's avatar
thomwolf committed
159
160
161
162
163
        """Constructs OpenAIGPTConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `OpenAIGPTModel` or a configuration json file.
            n_special: The number of special tokens to learn during fine-tuning ('[SEP]', '[CLF]', ...)
thomwolf's avatar
thomwolf committed
164
165
            n_positions: Number of positional embeddings.
            n_ctx: Size of the causal mask (usually same as n_positions).
thomwolf's avatar
thomwolf committed
166
167
168
169
170
171
172
173
174
175
176
            n_embd: Dimensionality of the embeddings and hidden states.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            afn: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            resid_pdrop: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            attn_pdrop: The dropout ratio for the attention
                probabilities.
            embd_pdrop: The dropout ratio for the embeddings.
177
            layer_norm_epsilon: epsilon to use in the layer norm layers
thomwolf's avatar
thomwolf committed
178
179
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
180
            predict_special_tokens: should we predict special tokens (when the model has a LM head)
thomwolf's avatar
thomwolf committed
181
        """
thomwolf's avatar
thomwolf committed
182
183
        super(OpenAIGPTConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
184
185
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
186
            with open(vocab_size_or_config_json_file, "r", encoding="utf-8") as reader:
thomwolf's avatar
thomwolf committed
187
188
189
190
191
192
193
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
            self.vocab_size = vocab_size_or_config_json_file
            self.n_special = n_special
            self.n_ctx = n_ctx
thomwolf's avatar
thomwolf committed
194
            self.n_positions = n_positions
thomwolf's avatar
thomwolf committed
195
196
197
198
199
200
201
            self.n_embd = n_embd
            self.n_layer = n_layer
            self.n_head = n_head
            self.afn = afn
            self.resid_pdrop = resid_pdrop
            self.embd_pdrop = embd_pdrop
            self.attn_pdrop = attn_pdrop
202
            self.layer_norm_epsilon = layer_norm_epsilon
thomwolf's avatar
thomwolf committed
203
            self.initializer_range = initializer_range
204
            self.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
205
206

            self.num_labels = num_labels
thomwolf's avatar
thomwolf committed
207
208
209
            self.summary_type = summary_type
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
210
            self.summary_first_dropout = summary_first_dropout
thomwolf's avatar
thomwolf committed
211
            self.summary_proj_to_labels = summary_proj_to_labels
thomwolf's avatar
thomwolf committed
212
        else:
213
214
215
216
            raise ValueError(
                "First argument must be either a vocabulary size (int)"
                "or the path to a pretrained model config file (str)"
            )
thomwolf's avatar
thomwolf committed
217
218

    @property
219
220
    def total_tokens_embeddings(self):
        return self.vocab_size + self.n_special
thomwolf's avatar
thomwolf committed
221

thomwolf's avatar
thomwolf committed
222
223
224
225
226
227
228
229
230
231
232
233
    @property
    def hidden_size(self):
        return self.n_embd

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
234
235

class Attention(nn.Module):
thomwolf's avatar
thomwolf committed
236
    def __init__(self, nx, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
237
238
239
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
240
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
241
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
242
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
243
244
        self.split_size = n_state
        self.scale = scale
245

thomwolf's avatar
thomwolf committed
246
        self.output_attentions = config.output_attentions
247

248
249
        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
250
251
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
252

253
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
254
255
        if len(heads) == 0:
            return
256
257
258
259
260
261
262
263
264
265
266
267
268
269
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        for head in heads:
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)

    def _attn(self, q, k, v, head_mask=None):
thomwolf's avatar
thomwolf committed
270
271
272
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
thomwolf's avatar
thomwolf committed
273
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
thomwolf's avatar
thomwolf committed
274
        # XD: self.b may be larger than w, so we need to crop it
thomwolf's avatar
thomwolf committed
275
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
thomwolf's avatar
thomwolf committed
276
277
        w = w * b + -1e9 * (1 - b)

thomwolf's avatar
thomwolf committed
278
279
        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)
280
281
282
283
284

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
285
        outputs = [torch.matmul(w, v)]
thomwolf's avatar
thomwolf committed
286
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
287
288
            outputs.append(w)
        return outputs
thomwolf's avatar
thomwolf committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

303
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
304
305
306
307
308
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)
309

thomwolf's avatar
thomwolf committed
310
311
        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]
312

thomwolf's avatar
thomwolf committed
313
314
315
        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
thomwolf's avatar
thomwolf committed
316
317
318

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)
thomwolf's avatar
thomwolf committed
319
320
321


class MLP(nn.Module):
322
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
thomwolf's avatar
thomwolf committed
323
        super(MLP, self).__init__()
324
        nx = config.n_embd
325
326
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
327
328
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)
thomwolf's avatar
thomwolf committed
329
330
331
332
333
334
335
336

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
thomwolf's avatar
thomwolf committed
337
    def __init__(self, n_ctx, config, scale=False):
thomwolf's avatar
thomwolf committed
338
        super(Block, self).__init__()
339
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
340
        self.attn = Attention(nx, n_ctx, config, scale)
341
        self.ln_1 = LayerNorm(nx, eps=config.layer_norm_epsilon)
342
        self.mlp = MLP(4 * nx, config)
343
        self.ln_2 = LayerNorm(nx, eps=config.layer_norm_epsilon)
thomwolf's avatar
thomwolf committed
344

345
    def forward(self, x, head_mask=None):
thomwolf's avatar
thomwolf committed
346
347
348
        attn_outputs = self.attn(x, head_mask=head_mask)
        a = attn_outputs[0]

thomwolf's avatar
thomwolf committed
349
350
351
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)
thomwolf's avatar
thomwolf committed
352
353
354

        outputs = [h] + attn_outputs[1:]
        return outputs
thomwolf's avatar
thomwolf committed
355
356


thomwolf's avatar
thomwolf committed
357
class OpenAIGPTLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
358
359
    """ Language Model Head for the transformer """

360
    def __init__(self, model_embeddings_weights, config):
thomwolf's avatar
thomwolf committed
361
        super(OpenAIGPTLMHead, self).__init__()
362
        self.n_embd = config.n_embd
363
364
        self.vocab_size = config.vocab_size
        self.predict_special_tokens = config.predict_special_tokens
365
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
366
367
        embed_shape = model_embeddings_weights.shape
        self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
thomwolf's avatar
thomwolf committed
368
369
        self.set_embeddings_weights(model_embeddings_weights)

370
371
    def set_embeddings_weights(self, model_embeddings_weights, predict_special_tokens=True):
        self.predict_special_tokens = predict_special_tokens
372
373
374
375
376

        if self.torchscript:
            self.decoder.weight = nn.Parameter(model_embeddings_weights.clone())
        else:
            self.decoder.weight = model_embeddings_weights  # Tied weights
thomwolf's avatar
thomwolf committed
377

thomwolf's avatar
thomwolf committed
378
379
    def forward(self, hidden_state):
        lm_logits = self.decoder(hidden_state)
380
381
        if not self.predict_special_tokens:
            lm_logits = lm_logits[..., :self.vocab_size]
thomwolf's avatar
thomwolf committed
382
383
384
        return lm_logits


385
class OpenAIGPTPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
386
387
388
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
389
    config_class = OpenAIGPTConfig
390
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
391
392
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"
393

394
395
396
    def __init__(self, *inputs, **kwargs):
        super(OpenAIGPTPreTrainedModel, self).__init__(*inputs, **kwargs)

thomwolf's avatar
thomwolf committed
397
398
399
    def init_weights(self, module):
        """ Initialize the weights.
        """
400
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
thomwolf's avatar
thomwolf committed
401
402
403
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
404
405
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
406
407
408
        elif isinstance(module, LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
409

thomwolf's avatar
thomwolf committed
410
    @classmethod
411
    def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
thomwolf's avatar
thomwolf committed
412
413
414
415
416
        """
        Instantiate a OpenAIGPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
thomwolf's avatar
thomwolf committed
417
            pretrained_model_name_or_path: either:
thomwolf's avatar
thomwolf committed
418
419
                - a str with the name of a pre-trained model to load selected in the list of:
                - a path or url to a pretrained model archive containing:
420
                    . `config.json` a configuration file for the model
thomwolf's avatar
thomwolf committed
421
                    . `pytorch_model.bin` a PyTorch dump of a OpenAIGPTModel instance
422
                - a path or url to a pretrained model archive containing:
423
                    . `config.json` a configuration file for the model
424
425
                    . a series of NumPy files containing OpenAI TensorFlow trained weights
            from_tf: should we load the weights from a locally saved TensorFlow checkpoint
thomwolf's avatar
thomwolf committed
426
427
            cache_dir: an optional path to a folder in which the pre-trained models will be cached.
            state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of pre-trained models
428
            *inputs, **kwargs: additional input for the specific OpenAI-GPT class
thomwolf's avatar
thomwolf committed
429
        """
430
431
432
433
        num_special_tokens = kwargs.get('num_special_tokens', None)
        kwargs.pop('num_special_tokens', None)

        model = PreTrainedModel.from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs)
434

thomwolf's avatar
thomwolf committed
435
        # Add additional embeddings for special tokens if needed
436
        # This step also make sure we are still sharing the output and input embeddings after loading weights
437
        model.set_num_special_tokens(num_special_tokens)
thomwolf's avatar
thomwolf committed
438
        return model
thomwolf's avatar
thomwolf committed
439
440


thomwolf's avatar
thomwolf committed
441
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
442
443
    """OpenAI GPT model ("Improving Language Understanding by Generative Pre-Training").

444
445
446
447
448
449
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
450
451
452
453
454
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
455
         config.vocab_size + config.n_special - 1]                  ______________________
456

457
458
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
459
460
461
    You should use the associate indices to index the embeddings.

    Params:
462
463
464
465
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
466
467
468

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
469
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
470
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
471
            with the position indices (selected in the range [0, config.n_positions - 1[.
472
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
473
474
475
476
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
477
478
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
479
480

    Outputs:
481
482
        `hidden_states`: a list of all the encoded-hidden-states in the model (length of the list: number of layers + 1 for the output of the embeddings)
            as torch.FloatTensor of size [batch_size, sequence_length, hidden_size]
483
484
485
486
487
488
489
490
491
492
493
494
495
            (or more generally [d_1, ..., d_n, hidden_size] were d_1 ... d_n are the dimension of input_ids)

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTModel(config)
    hidden_states = model(input_ids)
    ```
    """
496

thomwolf's avatar
thomwolf committed
497
    def __init__(self, config):
498
        super(OpenAIGPTModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
499
500
501
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

thomwolf's avatar
thomwolf committed
502
        self.tokens_embed = nn.Embedding(config.total_tokens_embeddings, config.n_embd)
503
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
504
        self.drop = nn.Dropout(config.embd_pdrop)
505
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
506

thomwolf's avatar
thomwolf committed
507
508
        self.apply(self.init_weights)

509
    def set_num_special_tokens(self, num_special_tokens=None):
510
        " Update input embeddings with new embedding matrice if needed "
511
        if num_special_tokens is None or self.config.n_special == num_special_tokens:
512
            return
thomwolf's avatar
thomwolf committed
513
514
        # Update config
        self.config.n_special = num_special_tokens
thomwolf's avatar
thomwolf committed
515
        # Build new embeddings and initialize all new embeddings (in particular the special tokens)
516
        old_embed = self.tokens_embed
517
        self.tokens_embed = nn.Embedding(self.config.total_tokens_embeddings, self.config.n_embd)
thomwolf's avatar
thomwolf committed
518
        self.tokens_embed.to(old_embed.weight.device)
519
        self.init_weights(self.tokens_embed)
thomwolf's avatar
thomwolf committed
520
521
        # Copy word embeddings from the previous weights
        self.tokens_embed.weight.data[:self.config.vocab_size, :] = old_embed.weight.data[:self.config.vocab_size, :]
thomwolf's avatar
thomwolf committed
522

thomwolf's avatar
thomwolf committed
523
    def _prune_heads(self, heads_to_prune):
524
525
526
527
528
529
530
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
531
        if position_ids is None:
532
533
534
535
536
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
thomwolf's avatar
thomwolf committed
537
538
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

539
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
540
        # 1.0 in head_mask indicate we keep the head
541
        # attention_probs has shape bsz x n_heads x N x N
542
        # head_mask has shape n_layer x batch x n_heads x N x N
543
544
        if head_mask is not None:
            if head_mask.dim() == 1:
545
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
546
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
547
            elif head_mask.dim() == 2:
548
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
549
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
550
551
        else:
            head_mask = [None] * self.config.n_layer
552

thomwolf's avatar
thomwolf committed
553
554
555
556
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

557
558
        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
thomwolf's avatar
thomwolf committed
559
560
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
561
            token_type_embeds = self.tokens_embed(token_type_ids)
thomwolf's avatar
thomwolf committed
562
563
564
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
565
566
        hidden_states = self.drop(hidden_states)

567
568
        output_shape = input_shape + (hidden_states.size(-1),)

569
570
        all_attentions = ()
        all_hidden_states = ()
571
        for i, block in enumerate(self.h):
thomwolf's avatar
thomwolf committed
572
            if self.output_hidden_states:
573
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
574

575
            outputs = block(hidden_states, head_mask[i])
thomwolf's avatar
thomwolf committed
576
            hidden_states = outputs[0]
thomwolf's avatar
thomwolf committed
577
            if self.output_attentions:
578
                all_attentions = all_attentions + (outputs[1],)
thomwolf's avatar
thomwolf committed
579
580
581

        # Add last layer
        if self.output_hidden_states:
582
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)
583

584
        outputs = (hidden_states.view(*output_shape),)
thomwolf's avatar
thomwolf committed
585
        if self.output_hidden_states:
586
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
587
        if self.output_attentions:
588
            outputs = outputs + (all_attentions,)
thomwolf's avatar
thomwolf committed
589
        return outputs  # last hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
590

591

thomwolf's avatar
thomwolf committed
592
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
593
594
    """OpenAI GPT model with a Language Modeling head ("Improving Language Understanding by Generative Pre-Training").

595
596
597
598
599
600
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
601
602
603
604
605
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
606
         config.vocab_size + config.n_special - 1]                  ______________________
607

608
609
610
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
611
612

    Params:
613
614
615
616
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
617
618
619

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] (or more generally [d_1, ..., d_n, sequence_length]
620
            were d_1 ... d_n are arbitrary dimensions) with the word BPE token indices selected in the range [0, total_tokens_embeddings[
621
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
622
            with the position indices (selected in the range [0, config.n_positions - 1[.
623
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
624
625
626
627
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
628
629
630
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
            with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., vocab_size]
631
632
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
633
634
635
636
637

    Outputs:
        if `lm_labels` is not `None`:
            Outputs the language modeling loss.
        else:
638
639
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, sequence_length, total_tokens_embeddings]
                (or more generally [d_1, ..., d_n, total_tokens_embeddings] were d_1 ... d_n are the dimension of input_ids)
640
641
642
643
644
645
646
647
648
649
650
651

    Example usage:
    ```python
    # Already been converted into BPE token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])

    config = modeling_openai.OpenAIGPTConfig()

    model = modeling_openai.OpenAIGPTLMHeadModel(config)
    lm_logits = model(input_ids)
    ```
    """
652

thomwolf's avatar
thomwolf committed
653
    def __init__(self, config):
654
        super(OpenAIGPTLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
655
        self.transformer = OpenAIGPTModel(config)
656
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
657
658
        self.apply(self.init_weights)

659
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
660
661
662
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
663
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
664
        self.transformer.set_num_special_tokens(num_special_tokens)
665
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
666

667
    def forward(self, input_ids, position_ids=None, token_type_ids=None, lm_labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
668
669
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
670
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
671

672
        outputs = (lm_logits,) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
673
        if lm_labels is not None:
674
            # Shift so that tokens < n predict n
thomwolf's avatar
thomwolf committed
675
676
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
Catalin Voss's avatar
Catalin Voss committed
677
            # Flatten the tokens
thomwolf's avatar
thomwolf committed
678
            loss_fct = CrossEntropyLoss(ignore_index=-1)
679
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
680
                            shift_labels.view(-1))
681
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
682
683

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
684

685

thomwolf's avatar
thomwolf committed
686
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
thomwolf's avatar
thomwolf committed
687
    """OpenAI GPT model with a Language Modeling and a Multiple Choice head ("Improving Language Understanding by Generative Pre-Training").
688

689
690
691
692
693
694
    OpenAI GPT use a single embedding matrix to store the word and special embeddings.
    Special tokens embeddings are additional tokens that are not pre-trained: [SEP], [CLS]...
    Special tokens need to be trained during the fine-tuning if you use them.
    The number of special embeddings can be controled using the `set_num_special_tokens(num_special_tokens)` function.

    The embeddings are ordered as follow in the token embeddings matrice:
695
696
697
698
699
        [0,                                                         ----------------------
         ...                                                        -> word embeddings
         config.vocab_size - 1,                                     ______________________
         config.vocab_size,
         ...                                                        -> special embeddings
700
         config.vocab_size + config.n_special - 1]                  ______________________
701

702
703
704
    where total_tokens_embeddings can be obtained as config.total_tokens_embeddings and is:
        total_tokens_embeddings = config.vocab_size + config.n_special
    You should use the associate indices to index the embeddings.
705
706

    Params:
707
708
709
710
        `config`: a OpenAIGPTConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
711
712

    Inputs:
thomwolf's avatar
thomwolf committed
713
714
715
716
        `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length] with the BPE token
            indices selected in the range [0, total_tokens_embeddings[
        `mc_token_ids`: a torch.LongTensor of shape [batch_size, num_choices] with the index of the token from
            which we should take the hidden state to feed the multiple choice classifier (usually last token of the sequence)
717
        `position_ids`: an optional torch.LongTensor with the same shape as input_ids
718
            with the position indices (selected in the range [0, config.n_positions - 1[.
719
        `token_type_ids`: an optional torch.LongTensor with the same shape as input_ids
720
721
722
723
            You can use it to add a third type of embedding to each input token in the sequence
            (the previous two being the word and position embeddings).
            The input, position and token_type embeddings are summed inside the Transformer before the first
            self-attention block.
724
        `lm_labels`: optional language modeling labels: torch.LongTensor of shape [batch_size, num_choices, sequence_length]
725
726
            with indices selected in [-1, 0, ..., total_tokens_embeddings]. All labels set to -1 are ignored (masked), the loss
            is only computed for the labels set in [0, ..., total_tokens_embeddings]
727
728
        `multiple_choice_labels`: optional multiple choice labels: torch.LongTensor of shape [batch_size]
            with indices selected in [0, ..., num_choices].
729
730
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
731
732
733
734
735

    Outputs:
        if `lm_labels` and `multiple_choice_labels` are not `None`:
            Outputs a tuple of losses with the language modeling loss and the multiple choice loss.
        else: a tuple with
736
            `lm_logits`: the language modeling logits as a torch.FloatTensor of size [batch_size, num_choices, sequence_length, total_tokens_embeddings]
737
738
739
740
741
            `multiple_choice_logits`: the multiple choice logits as a torch.FloatTensor of size [batch_size, num_choices]

    Example usage:
    ```python
    # Already been converted into BPE token ids
thomwolf's avatar
thomwolf committed
742
743
    input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]]])  # (bsz, number of choice, seq length)
    mc_token_ids = torch.LongTensor([[2], [1]]) # (bsz, number of choice)
744
745
746

    config = modeling_openai.OpenAIGPTConfig()

VictorSanh's avatar
VictorSanh committed
747
    model = modeling_openai.OpenAIGPTDoubleHeadsModel(config)
thomwolf's avatar
thomwolf committed
748
    lm_logits, multiple_choice_logits = model(input_ids, mc_token_ids)
749
750
    ```
    """
751

thomwolf's avatar
thomwolf committed
752
    def __init__(self, config):
753
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
754

thomwolf's avatar
thomwolf committed
755
        self.transformer = OpenAIGPTModel(config)
756
        self.lm_head = OpenAIGPTLMHead(self.transformer.tokens_embed.weight, config)
thomwolf's avatar
thomwolf committed
757
758
        self.multiple_choice_head = SequenceSummary(config)

thomwolf's avatar
thomwolf committed
759
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
760

761
    def set_num_special_tokens(self, num_special_tokens, predict_special_tokens=True):
762
763
764
        """ Update input and output embeddings with new embedding matrice
            Make sure we are sharing the embeddings
        """
765
        self.config.predict_special_tokens = self.transformer.config.predict_special_tokens = predict_special_tokens
thomwolf's avatar
thomwolf committed
766
        self.transformer.set_num_special_tokens(num_special_tokens)
767
        self.lm_head.set_embeddings_weights(self.transformer.tokens_embed.weight, predict_special_tokens=predict_special_tokens)
thomwolf's avatar
thomwolf committed
768

thomwolf's avatar
thomwolf committed
769
    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
770
                position_ids=None, head_mask=None):
thomwolf's avatar
thomwolf committed
771
772
        transformer_outputs = self.transformer(input_ids, position_ids, token_type_ids, head_mask)
        hidden_states = transformer_outputs[0]
773

thomwolf's avatar
thomwolf committed
774
        lm_logits = self.lm_head(hidden_states)
thomwolf's avatar
thomwolf committed
775
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
thomwolf's avatar
thomwolf committed
776

777
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
thomwolf's avatar
thomwolf committed
778
779
780
781
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
782
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
783
        if lm_labels is not None:
thomwolf's avatar
thomwolf committed
784
785
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
thomwolf's avatar
thomwolf committed
786
            loss_fct = CrossEntropyLoss(ignore_index=-1)
thomwolf's avatar
thomwolf committed
787
788
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
789
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
790
791

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)