README.md 3.93 KB
Newer Older
1
2
3
4
5
---
datasets:
- squad_v2
---

6
7
# roberta-base for QA 

8
NOTE: This is version 2 of the model. See [this github issue](https://github.com/deepset-ai/FARM/issues/552) from the FARM repository for an explanation of why we updated. If you'd like to use version 1, specify `revision="v1.0"` when loading the model in Transformers 3.5.
9

10
11
12
13
14
15
16
17
18
19
20
21
## Overview
**Language model:** roberta-base  
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Code:**  See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)  
**Infrastructure**: 4x Tesla v100

## Hyperparameters

```
22
23
batch_size = 96
n_epochs = 2
24
base_LM_model = "roberta-base"
25
max_seq_len = 386
26
27
28
29
30
31
32
33
34
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
``` 

## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
35

36
```
37
38
39
40
41
42
43
44
45
46
"exact": 79.97136359807968
"f1": 83.00449234495325

"total": 11873
"HasAns_exact": 78.03643724696356
"HasAns_f1": 84.11139298441825
"HasAns_total": 5928
"NoAns_exact": 81.90075693860386
"NoAns_f1": 81.90075693860386
"NoAns_total": 5945
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
```

## Usage

### In Transformers
```python
from transformers.pipelines import pipeline
from transformers.modeling_auto import AutoModelForQuestionAnswering
from transformers.tokenization_auto import AutoTokenizer

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

### In FARM

```python
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
             "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)

# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
```

### In haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
# or 
97
reader = TransformersReader(model_name_or_path="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")
98
99
100
101
```


## Authors
102
103
104
105
Branden Chan: `branden.chan [at] deepset.ai`
Timo M枚ller: `timo.moeller [at] deepset.ai`
Malte Pietsch: `malte.pietsch [at] deepset.ai`
Tanay Soni: `tanay.soni [at] deepset.ai`
106
107

## About us
108
![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)
109
110
111
112
113
114
115
116
117
118
119

We bring NLP to the industry via open source!  
Our focus: Industry specific language models & large scale QA systems.  
  
Some of our work: 
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [FARM](https://github.com/deepset-ai/FARM)
- [Haystack](https://github.com/deepset-ai/haystack/)

Get in touch:
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)