README.md 3.66 KB
Newer Older
1
2
3
4
5
---
datasets:
- squad_v2
---

6
7
# roberta-base for QA 

8
9
NOTE: This model has been superseded by deepset/roberta-base-squad2-v2. For an explanation of why, see [this github issue](https://github.com/deepset-ai/FARM/issues/552) from the FARM repository.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
## Overview
**Language model:** roberta-base  
**Language:** English  
**Downstream-task:** Extractive QA  
**Training data:** SQuAD 2.0  
**Eval data:** SQuAD 2.0  
**Code:**  See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)  
**Infrastructure**: 4x Tesla v100

## Hyperparameters

```
batch_size = 50
n_epochs = 3
base_LM_model = "roberta-base"
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
``` 

## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
"exact": 78.49743114629833,
"f1": 81.73092721240889
```

## Usage

### In Transformers
```python
from transformers.pipelines import pipeline
from transformers.modeling_auto import AutoModelForQuestionAnswering
from transformers.tokenization_auto import AutoTokenizer

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
    'question': 'Why is model conversion important?',
    'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)

# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```

### In FARM

```python
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer

model_name = "deepset/roberta-base-squad2"

# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
             "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input, rest_api_schema=True)

# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
```

### In haystack
For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2")
# or 
reader = TransformersReader(model="deepset/roberta-base-squad2",tokenizer="deepset/roberta-base-squad2")
```


## Authors
93
94
95
96
Branden Chan: `branden.chan [at] deepset.ai`
Timo M枚ller: `timo.moeller [at] deepset.ai`
Malte Pietsch: `malte.pietsch [at] deepset.ai`
Tanay Soni: `tanay.soni [at] deepset.ai`
97
98

## About us
99
![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)
100
101
102
103
104
105
106
107
108
109
110

We bring NLP to the industry via open source!  
Our focus: Industry specific language models & large scale QA systems.  
  
Some of our work: 
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [FARM](https://github.com/deepset-ai/FARM)
- [Haystack](https://github.com/deepset-ai/haystack/)

Get in touch:
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)