run_tf_ner.py 10 KB
Newer Older
1
# coding=utf-8
Julien Plu's avatar
Julien Plu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition."""


import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
20
import warnings
Julien Plu's avatar
Julien Plu committed
21
22
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple
Aymeric Augustin's avatar
Aymeric Augustin committed
23

24
import numpy as np
Julien Plu's avatar
Julien Plu committed
25
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27
from transformers import (
28
29
    AutoConfig,
    AutoTokenizer,
Julien Plu's avatar
Julien Plu committed
30
31
    EvalPrediction,
    HfArgumentParser,
32
    TFAutoModelForTokenClassification,
Julien Plu's avatar
Julien Plu committed
33
34
    TFTrainer,
    TFTrainingArguments,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
)
Julien Plu's avatar
Julien Plu committed
36
from utils_ner import Split, TFNerDataset, get_labels
37
38


Julien Plu's avatar
Julien Plu committed
39
logger = logging.getLogger(__name__)
40
41


Julien Plu's avatar
Julien Plu committed
42
43
44
45
46
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
47

Julien Plu's avatar
Julien Plu committed
48
49
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
50
    )
Julien Plu's avatar
Julien Plu committed
51
52
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
53
    )
Julien Plu's avatar
Julien Plu committed
54
55
56
57
58
59
60
61
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
62
    )
63
64


Julien Plu's avatar
Julien Plu committed
65
66
67
68
69
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
70

Julien Plu's avatar
Julien Plu committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
    )
    labels: Optional[str] = field(
        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
87
88


Julien Plu's avatar
Julien Plu committed
89
90
91
92
93
94
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
95

96
    if (
Julien Plu's avatar
Julien Plu committed
97
98
99
100
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
101
    ):
102
        raise ValueError(
Julien Plu's avatar
Julien Plu committed
103
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
104
        )
105

Julien Plu's avatar
Julien Plu committed
106
107
108
109
110
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
111
    )
Julien Plu's avatar
Julien Plu committed
112
    logger.info(
113
114
115
        "n_replicas: %s, distributed training: %s, 16-bits training: %s",
        training_args.n_replicas,
        bool(training_args.n_replicas > 1),
Julien Plu's avatar
Julien Plu committed
116
117
118
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)
119

Julien Plu's avatar
Julien Plu committed
120
121
122
    # Prepare Token Classification task
    labels = get_labels(data_args.labels)
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
Julien Plu's avatar
Julien Plu committed
123
    num_labels = len(labels)
Julien Plu's avatar
Julien Plu committed
124
125
126
127
128
129
130

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

131
    config = AutoConfig.from_pretrained(
Julien Plu's avatar
Julien Plu committed
132
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
133
        num_labels=num_labels,
Julien Plu's avatar
Julien Plu committed
134
135
136
137
138
139
140
141
        id2label=label_map,
        label2id={label: i for i, label in enumerate(labels)},
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
142
    )
143

Julien Plu's avatar
Julien Plu committed
144
145
146
147
148
149
    with training_args.strategy.scope():
        model = TFAutoModelForTokenClassification.from_pretrained(
            model_args.model_name_or_path,
            from_pt=bool(".bin" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
150
        )
151

Julien Plu's avatar
Julien Plu committed
152
153
154
155
156
157
158
159
160
161
    # Get datasets
    train_dataset = (
        TFNerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
162
        )
Julien Plu's avatar
Julien Plu committed
163
164
165
166
167
168
169
170
171
172
173
174
        if training_args.do_train
        else None
    )
    eval_dataset = (
        TFNerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
175
        )
Julien Plu's avatar
Julien Plu committed
176
177
178
        if training_args.do_eval
        else None
    )
179

Julien Plu's avatar
Julien Plu committed
180
181
182
183
184
185
186
187
    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)
        batch_size, seq_len = preds.shape
        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
188
189
190
191
192
193
                if label_ids[i, j] == -1:
                    label_ids[i, j] = -100
                    warnings.warn(
                        "Using `-1` to mask the loss for the token is depreciated. Please use `-100` instead."
                    )
                if label_ids[i, j] != -100:
Julien Plu's avatar
Julien Plu committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)

        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = TFTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset.get_dataset() if train_dataset else None,
        eval_dataset=eval_dataset.get_dataset() if eval_dataset else None,
        compute_metrics=compute_metrics,
    )
216

Julien Plu's avatar
Julien Plu committed
217
218
219
220
221
    # Training
    if training_args.do_train:
        trainer.train()
        trainer.save_model()
        tokenizer.save_pretrained(training_args.output_dir)
222
223

    # Evaluation
Julien Plu's avatar
Julien Plu committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()
        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")

            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))

            results.update(result)

    # Predict
    if training_args.do_predict:
        test_dataset = TFNerDataset(
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
250
        )
251

Julien Plu's avatar
Julien Plu committed
252
253
254
255
256
        predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset())
        preds_list, labels_list = align_predictions(predictions, label_ids)
        report = classification_report(labels_list, preds_list)

        logger.info("\n%s", report)
257

Julien Plu's avatar
Julien Plu committed
258
        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
259

Julien Plu's avatar
Julien Plu committed
260
261
        with open(output_test_results_file, "w") as writer:
            writer.write("%s\n" % report)
262

Julien Plu's avatar
Julien Plu committed
263
264
265
266
267
        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")

        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
268
269
270
271
272
273
                example_id = 0

                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)

Julien Plu's avatar
Julien Plu committed
274
                        if not preds_list[example_id]:
275
                            example_id += 1
Julien Plu's avatar
Julien Plu committed
276
277
278
                    elif preds_list[example_id]:
                        output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"

279
280
                        writer.write(output_line)
                    else:
Julien Plu's avatar
Julien Plu committed
281
282
283
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

    return results
284
285
286


if __name__ == "__main__":
Julien Plu's avatar
Julien Plu committed
287
    main()