tokenization_utils.py 49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
21
22
import json
import six
23
import copy
24
25
from io import open

thomwolf's avatar
thomwolf committed
26
from .file_utils import cached_path, is_tf_available, is_torch_available
thomwolf's avatar
thomwolf committed
27
28
29

if is_tf_available():
    import tensorflow as tf
thomwolf's avatar
thomwolf committed
30
if is_torch_available():
thomwolf's avatar
thomwolf committed
31
    import torch
32
33
34

logger = logging.getLogger(__name__)

35
36
SPECIAL_TOKENS_MAP_FILE = 'special_tokens_map.json'
ADDED_TOKENS_FILE = 'added_tokens.json'
37
TOKENIZER_CONFIG_FILE = 'tokenizer_config.json'
38
39

class PreTrainedTokenizer(object):
40
41
    """ Base class for all tokenizers.
    Handle all the shared methods for tokenization and special tokens as well as methods dowloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
42

43
    This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
44

45
46
47
48
49
    Class attributes (overridden by derived classes):

        - ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string).
        - ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file.
        - ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size.
50
        - ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, a dictionnary of specific arguments to pass to the ``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the ``from_pretrained()`` method.
51
52
53

    Parameters:

thomwolf's avatar
thomwolf committed
54
        - ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token`` and ``self.bos_token_id``
55

thomwolf's avatar
thomwolf committed
56
        - ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token`` and ``self.eos_token_id``
57

thomwolf's avatar
thomwolf committed
58
        - ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token`` and ``self.unk_token_id``
59

thomwolf's avatar
thomwolf committed
60
        - ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token`` and ``self.sep_token_id``
61

thomwolf's avatar
thomwolf committed
62
        - ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token`` and ``self.pad_token_id``
63

thomwolf's avatar
thomwolf committed
64
        - ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token`` and ``self.cls_token_id``
65

thomwolf's avatar
thomwolf committed
66
        - ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id``
67

thomwolf's avatar
thomwolf committed
68
        - ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``
69
70
71
    """
    vocab_files_names = {}
    pretrained_vocab_files_map = {}
72
    pretrained_init_configuration = {}
73
74
    max_model_input_sizes = {}

75
76
77
78
79
80
    SPECIAL_TOKENS_ATTRIBUTES = ["bos_token", "eos_token", "unk_token", "sep_token",
                                 "pad_token", "cls_token", "mask_token",
                                 "additional_special_tokens"]

    @property
    def bos_token(self):
81
        """ Beginning of sentence token (string). Log an error if used while not having been set. """
82
83
84
85
86
87
        if self._bos_token is None:
            logger.error("Using bos_token, but it is not set yet.")
        return self._bos_token

    @property
    def eos_token(self):
88
        """ End of sentence token (string). Log an error if used while not having been set. """
89
90
91
92
93
94
        if self._eos_token is None:
            logger.error("Using eos_token, but it is not set yet.")
        return self._eos_token

    @property
    def unk_token(self):
95
        """ Unknown token (string). Log an error if used while not having been set. """
96
97
98
99
100
101
        if self._unk_token is None:
            logger.error("Using unk_token, but it is not set yet.")
        return self._unk_token

    @property
    def sep_token(self):
102
        """ Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
103
104
105
106
107
108
        if self._sep_token is None:
            logger.error("Using sep_token, but it is not set yet.")
        return self._sep_token

    @property
    def pad_token(self):
109
        """ Padding token (string). Log an error if used while not having been set. """
110
111
112
113
114
115
        if self._pad_token is None:
            logger.error("Using pad_token, but it is not set yet.")
        return self._pad_token

    @property
    def cls_token(self):
116
        """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
117
118
119
120
121
122
        if self._cls_token is None:
            logger.error("Using cls_token, but it is not set yet.")
        return self._cls_token

    @property
    def mask_token(self):
123
        """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
124
125
126
127
128
129
        if self._mask_token is None:
            logger.error("Using mask_token, but it is not set yet.")
        return self._mask_token

    @property
    def additional_special_tokens(self):
130
        """ All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
        if self._additional_special_tokens is None:
            logger.error("Using additional_special_tokens, but it is not set yet.")
        return self._additional_special_tokens

    @bos_token.setter
    def bos_token(self, value):
        self._bos_token = value

    @eos_token.setter
    def eos_token(self, value):
        self._eos_token = value

    @unk_token.setter
    def unk_token(self, value):
        self._unk_token = value

    @sep_token.setter
    def sep_token(self, value):
        self._sep_token = value

    @pad_token.setter
    def pad_token(self, value):
        self._pad_token = value

    @cls_token.setter
    def cls_token(self, value):
        self._cls_token = value

    @mask_token.setter
    def mask_token(self, value):
        self._mask_token = value

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

167
168
169
    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """
170
        return self.convert_tokens_to_ids(self.bos_token)
171
172
173
174

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """
175
        return self.convert_tokens_to_ids(self.eos_token)
176
177

    @property
maru0kun's avatar
maru0kun committed
178
    def unk_token_id(self):
179
        """ Id of the unknown token in the vocabulary. Log an error if used while not having been set. """
180
        return self.convert_tokens_to_ids(self.unk_token)
181
182
183
184

    @property
    def sep_token_id(self):
        """ Id of the separation token in the vocabulary. E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
185
        return self.convert_tokens_to_ids(self.sep_token)
186
187
188
189

    @property
    def pad_token_id(self):
        """ Id of the padding token in the vocabulary. Log an error if used while not having been set. """
190
        return self.convert_tokens_to_ids(self.pad_token)
191
192
193
194

    @property
    def cls_token_id(self):
        """ Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
195
        return self.convert_tokens_to_ids(self.cls_token)
196
197
198
199

    @property
    def mask_token_id(self):
        """ Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
200
        return self.convert_tokens_to_ids(self.mask_token)
201
202
203
204

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers). Log an error if used while not having been set. """
205
        return self.convert_tokens_to_ids(self.additional_special_tokens)
206

207
208
209
210
211
212
213
214
215
216
217
    def __init__(self, max_len=None, **kwargs):
        self._bos_token = None
        self._eos_token = None
        self._unk_token = None
        self._sep_token = None
        self._pad_token = None
        self._cls_token = None
        self._mask_token = None
        self._additional_special_tokens = []

        self.max_len = max_len if max_len is not None else int(1e12)
218
219

        # Added tokens
220
221
222
        self.added_tokens_encoder = {}
        self.added_tokens_decoder = {}

223
224
225
226
        # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
        self.init_inputs = ()
        self.init_kwargs = {}

227
        for key, value in kwargs.items():
228
            if key in self.SPECIAL_TOKENS_ATTRIBUTES:
229
230
231
232
                if key == 'additional_special_tokens':
                    assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                else:
                    assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
233
234
235
                setattr(self, key, value)


236
237
    @classmethod
    def from_pretrained(cls, *inputs, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
238
239
        r"""
        Instantiate a :class:`~pytorch_transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer.
240

LysandreJik's avatar
Doc  
LysandreJik committed
241
        Args:
242
243
244
245
246
247
248
249
250
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.

251
252
253
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the vocabulary files and override the cached versions if they exists.

254
255
256
257
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
            inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.

            kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details.

        Examples::

            # We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer

            # Download vocabulary from S3 and cache.
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

            # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')

            # If the tokenizer uses a single vocabulary file, you can point directly to this file
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt')

            # You can link tokens to special vocabulary when instantiating
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>')
            # You should be sure '<unk>' is in the vocabulary when doing that.
            # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
            assert tokenizer.unk_token == '<unk>'

        """
282
283
        return cls._from_pretrained(*inputs, **kwargs)

284

285
    @classmethod
286
    def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
thomwolf's avatar
thomwolf committed
287
        cache_dir = kwargs.pop('cache_dir', None)
288
        force_download = kwargs.pop('force_download', False)
289
        proxies = kwargs.pop('proxies', None)
thomwolf's avatar
thomwolf committed
290

291
292
        s3_models = list(cls.max_model_input_sizes.keys())
        vocab_files = {}
293
        init_configuration = {}
294
        if pretrained_model_name_or_path in s3_models:
thomwolf's avatar
thomwolf committed
295
            # Get the vocabulary from AWS S3 bucket
296
297
            for file_id, map_list in cls.pretrained_vocab_files_map.items():
                vocab_files[file_id] = map_list[pretrained_model_name_or_path]
298
299
            if cls.pretrained_init_configuration and pretrained_model_name_or_path in cls.pretrained_init_configuration:
                init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path]
300
        else:
thomwolf's avatar
thomwolf committed
301
            # Get the vocabulary from local files
302
303
304
305
306
            logger.info(
                "Model name '{}' not found in model shortcut name list ({}). "
                "Assuming '{}' is a path or url to a directory containing tokenizer files.".format(
                    pretrained_model_name_or_path, ', '.join(s3_models),
                    pretrained_model_name_or_path))
thomwolf's avatar
thomwolf committed
307
308
309

            # Look for the tokenizer main vocabulary files
            for file_id, file_name in cls.vocab_files_names.items():
310
                if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
311
                    # If a directory is provided we look for the standard filenames
312
313
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                else:
thomwolf's avatar
thomwolf committed
314
                    # If a path to a file is provided we use it (will only work for non-BPE tokenizer using a single vocabulary file)
315
316
                    full_file_name = pretrained_model_name_or_path
                if not os.path.exists(full_file_name):
317
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
318
319
                    full_file_name = None
                vocab_files[file_id] = full_file_name
thomwolf's avatar
thomwolf committed
320
321

            # Look for the additional tokens files
322
323
324
325
            additional_files_names = {'added_tokens_file': ADDED_TOKENS_FILE,
                                      'special_tokens_map_file': SPECIAL_TOKENS_MAP_FILE,
                                      'tokenizer_config_file': TOKENIZER_CONFIG_FILE,
                                      }
thomwolf's avatar
thomwolf committed
326
327
328
329
330
331

            # If a path to a file was provided, get the parent directory
            saved_directory = pretrained_model_name_or_path
            if os.path.exists(saved_directory) and not os.path.isdir(saved_directory):
                saved_directory = os.path.dirname(saved_directory)

332
            for file_id, file_name in additional_files_names.items():
thomwolf's avatar
thomwolf committed
333
334
335
336
337
338
                full_file_name = os.path.join(saved_directory, file_name)
                if not os.path.exists(full_file_name):
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
                    full_file_name = None
                vocab_files[file_id] = full_file_name

339
340
341
342
343
344
345
346
            if all(full_file_name is None for full_file_name in vocab_files.values()):
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find tokenizer files"
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, ))
                return None
347
348

        # Get files from url, cache, or disk depending on the case
349
350
351
352
353
354
        try:
            resolved_vocab_files = {}
            for file_id, file_path in vocab_files.items():
                if file_path is None:
                    resolved_vocab_files[file_id] = None
                else:
355
                    resolved_vocab_files[file_id] = cached_path(file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
356
        except EnvironmentError as e:
357
358
359
360
361
362
363
364
365
            if pretrained_model_name_or_path in s3_models:
                logger.error("Couldn't reach server to download vocabulary.")
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, str(vocab_files.keys())))
366
            raise e
367
368
369
370
371
372
373
374

        for file_id, file_path in vocab_files.items():
            if file_path == resolved_vocab_files[file_id]:
                logger.info("loading file {}".format(file_path))
            else:
                logger.info("loading file {} from cache at {}".format(
                    file_path, resolved_vocab_files[file_id]))

375
376
377
378
379
        # Prepare tokenizer initialization kwargs
        # Did we saved some inputs and kwargs to reload ?
        tokenizer_config_file = resolved_vocab_files.pop('tokenizer_config_file', None)
        if tokenizer_config_file is not None:
            init_kwargs = json.load(open(tokenizer_config_file, encoding="utf-8"))
380
            saved_init_inputs = init_kwargs.pop('init_inputs', ())
381
382
383
384
385
386
            if not init_inputs:
                init_inputs = saved_init_inputs
        else:
            init_kwargs = init_configuration

        # Update with newly provided kwargs
387
388
        init_kwargs.update(kwargs)

389
        # Set max length if needed
390
391
392
393
        if pretrained_model_name_or_path in cls.max_model_input_sizes:
            # if we're using a pretrained model, ensure the tokenizer
            # wont index sequences longer than the number of positional embeddings
            max_len = cls.max_model_input_sizes[pretrained_model_name_or_path]
394
            if max_len is not None and isinstance(max_len, (int, float)):
395
                init_kwargs['max_len'] = min(init_kwargs.get('max_len', int(1e12)), max_len)
396

397
        # Merge resolved_vocab_files arguments in init_kwargs.
398
399
        added_tokens_file = resolved_vocab_files.pop('added_tokens_file', None)
        special_tokens_map_file = resolved_vocab_files.pop('special_tokens_map_file', None)
thomwolf's avatar
thomwolf committed
400
        for args_name, file_path in resolved_vocab_files.items():
401
402
            if args_name not in init_kwargs:
                init_kwargs[args_name] = file_path
403
404
405
        if special_tokens_map_file is not None:
            special_tokens_map = json.load(open(special_tokens_map_file, encoding="utf-8"))
            for key, value in special_tokens_map.items():
406
407
                if key not in init_kwargs:
                    init_kwargs[key] = value
thomwolf's avatar
thomwolf committed
408

409
        # Instantiate tokenizer.
410
411
412
413
414
        tokenizer = cls(*init_inputs, **init_kwargs)

        # Save inputs and kwargs for saving and re-loading with ``save_pretrained``
        tokenizer.init_inputs = init_inputs
        tokenizer.init_kwargs = init_kwargs
415

416
417
        # Add supplementary tokens.
        if added_tokens_file is not None:
thomwolf's avatar
thomwolf committed
418
            added_tok_encoder = json.load(open(added_tokens_file, encoding="utf-8"))
419
420
421
422
            added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
            tokenizer.added_tokens_encoder.update(added_tok_encoder)
            tokenizer.added_tokens_decoder.update(added_tok_decoder)

423
424
        return tokenizer

thomwolf's avatar
thomwolf committed
425

426
    def save_pretrained(self, save_directory):
427
428
429
430
431
432
433
        """ Save the tokenizer vocabulary files together with:
                - added tokens,
                - special-tokens-to-class-attributes-mapping,
                - tokenizer instantiation positional and keywords inputs (e.g. do_lower_case for Bert).

            This won't save modifications other than (added tokens and special token mapping) you may have
            applied to the tokenizer after the instantion (e.g. modifying tokenizer.do_lower_case after creation).
434
435

            This method make sure the full tokenizer can then be re-loaded using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
436
437
438
439
440
441
442
        """
        if not os.path.isdir(save_directory):
            logger.error("Saving directory ({}) should be a directory".format(save_directory))
            return

        special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE)
        added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE)
443
444
445
446
        tokenizer_config_file = os.path.join(save_directory, TOKENIZER_CONFIG_FILE)

        tokenizer_config = copy.deepcopy(self.init_kwargs)
        tokenizer_config['init_inputs'] = copy.deepcopy(self.init_inputs)
447
448
        for file_id in self.vocab_files_names.keys():
            tokenizer_config.pop(file_id, None)
449
450
451

        with open(tokenizer_config_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(tokenizer_config, ensure_ascii=False))
452
453
454
455
456

        with open(special_tokens_map_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.special_tokens_map, ensure_ascii=False))

        with open(added_tokens_file, 'w', encoding='utf-8') as f:
thomwolf's avatar
thomwolf committed
457
            if self.added_tokens_encoder:
458
                out_str = json.dumps(self.added_tokens_encoder, ensure_ascii=False)
thomwolf's avatar
thomwolf committed
459
460
461
            else:
                out_str = u"{}"
            f.write(out_str)
462
463
464
465
466
467
468

        vocab_files = self.save_vocabulary(save_directory)

        return vocab_files + (special_tokens_map_file, added_tokens_file)


    def save_vocabulary(self, save_directory):
469
        """ Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
470
            and special token mappings.
471
472

            Please use :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full Tokenizer state if you want to reload it using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
473
        """
thomwolf's avatar
thomwolf committed
474
475
        raise NotImplementedError

476
477

    def vocab_size(self):
478
        """ Size of the base vocabulary (without the added tokens) """
thomwolf's avatar
thomwolf committed
479
480
        raise NotImplementedError

481
482

    def __len__(self):
483
        """ Size of the full vocabulary with the added tokens """
484
485
486
487
        return self.vocab_size + len(self.added_tokens_encoder)


    def add_tokens(self, new_tokens):
LysandreJik's avatar
Doc  
LysandreJik committed
488
489
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the
490
491
        vocabulary, they are added to it with indices starting from length of the current vocabulary.

LysandreJik's avatar
Doc  
LysandreJik committed
492
493
        Args:
            new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
494

LysandreJik's avatar
Doc  
LysandreJik committed
495
496
        Returns:
            Number of tokens added to the vocabulary.
497
498
499
500
501
502
503
504
505
506

        Examples::

            # Let's see how to increase the vocabulary of Bert model and tokenizer
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertModel.from_pretrained('bert-base-uncased')

            num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
507
508
509
510
511
512
        """
        if not new_tokens:
            return 0

        to_add_tokens = []
        for token in new_tokens:
513
            assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode))
thomwolf's avatar
thomwolf committed
514
515
            if token != self.unk_token and \
                    self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token):
516
517
518
519
520
521
522
523
524
525
                to_add_tokens.append(token)
                logger.info("Adding %s to the vocabulary", token)

        added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens))
        added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
        self.added_tokens_encoder.update(added_tok_encoder)
        self.added_tokens_decoder.update(added_tok_decoder)

        return len(to_add_tokens)

526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
    def num_added_tokens(self, pair=False):
        """
        Returns the number of added tokens when encoding a sequence with special tokens.

        Note:
            This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this
            inside your training loop.

        Args:
            pair: Returns the number of added tokens in the case of a sequence pair if set to True, returns the
                number of added tokens in the case of a single sequence if set to False.

        Returns:
            Number of tokens added to sequences
        """

        if pair:
543
            initial_tokens_len = len(self.encode("This is a sequence") + self.encode("This is another"))
LysandreJik's avatar
LysandreJik committed
544
            final_tokens_len = len(self.encode("This is a sequence", "This is another", add_special_tokens=True))
545
546
547
548
549
        else:
            initial_tokens_len = len(self.encode("This is a sequence"))
            final_tokens_len = len(self.encode("This is a sequence", add_special_tokens=True))

        return final_tokens_len - initial_tokens_len
550
551

    def add_special_tokens(self, special_tokens_dict):
LysandreJik's avatar
Doc  
LysandreJik committed
552
553
554
555
        """
        Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them
        to class attributes. If special tokens are NOT in the vocabulary, they are added
        to it (indexed starting from the last index of the current vocabulary).
556

thomwolf's avatar
thomwolf committed
557
558
559
560
561
562
563
        Using `add_special_tokens` will ensure your special tokens can be used in several ways:

        - special tokens are carefully handled by the tokenizer (they are never split)
        - you can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts.

        When possible, special tokens are already registered for provided pretrained models (ex: BertTokenizer cls_token is already registered to be '[CLS]' and XLM's one is also registered to be '</s>')

LysandreJik's avatar
Doc  
LysandreJik committed
564
565
566
567
        Args:
            special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes:
                [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``,
                ``additional_special_tokens``].
568

LysandreJik's avatar
Doc  
LysandreJik committed
569
                Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
570

LysandreJik's avatar
Doc  
LysandreJik committed
571
572
        Returns:
            Number of tokens added to the vocabulary.
573
574
575
576
577
578
579
580
581
582
583
584
585
586

        Examples::

            # Let's see how to add a new classification token to GPT-2
            tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
            model = GPT2Model.from_pretrained('gpt2')

            special_tokens_dict = {'cls_token': '<CLS>'}

            num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.

            assert tokenizer.cls_token == '<CLS>'
587
588
589
590
        """
        if not special_tokens_dict:
            return 0

591
        added_tokens = 0
592
        for key, value in special_tokens_dict.items():
593
            assert key in self.SPECIAL_TOKENS_ATTRIBUTES
594
595
596
597
598
599
            if key == 'additional_special_tokens':
                assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                added_tokens += self.add_tokens(value)
            else:
                assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
                added_tokens += self.add_tokens([value])
600
601
602
            logger.info("Assigning %s to the %s key of the tokenizer", value, key)
            setattr(self, key, value)

603
        return added_tokens
604
605
606
607
608
609
610
611

    def tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

            Take care of added tokens.
        """
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
        def split_on_token(tok, text):
            result = []
            split_text = text.split(tok)
            for i, sub_text in enumerate(split_text):
                sub_text = sub_text.strip()
                if i == 0 and not sub_text:
                    result += [tok]
                elif i == len(split_text) - 1:
                    if sub_text:
                        result += [sub_text]
                    else:
                        pass
                else:
                    if sub_text:
                        result += [sub_text]
                    result += [tok]
            return result

630
631
632
633
634
        def split_on_tokens(tok_list, text):
            if not text:
                return []
            if not tok_list:
                return self._tokenize(text, **kwargs)
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self.added_tokens_encoder \
                            and sub_text not in self.all_special_tokens:
                        tokenized_text += split_on_token(tok, sub_text)
                    else:
                        tokenized_text += [sub_text]
                text_list = tokenized_text

            return sum((self._tokenize(token, **kwargs) if token not \
                    in self.added_tokens_encoder and token not in self.all_special_tokens \
                    else [token] for token in tokenized_text), [])
651

652
        added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens
653
654
655
656
657
658
659
660
        tokenized_text = split_on_tokens(added_tokens, text)
        return tokenized_text

    def _tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

661
            Do NOT take care of added tokens.
662
        """
thomwolf's avatar
thomwolf committed
663
664
        raise NotImplementedError

665
    def convert_tokens_to_ids(self, tokens):
666
667
        """ Converts a single token, or a sequence of tokens, (str/unicode) in a single integer id
            (resp. a sequence of ids), using the vocabulary.
668
        """
669
670
671
        if tokens is None:
            return None

672
        if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)):
673
            return self._convert_token_to_id_with_added_voc(tokens)
674
675
676

        ids = []
        for token in tokens:
677
            ids.append(self._convert_token_to_id_with_added_voc(token))
678
679
680
681
682
683
        if len(ids) > self.max_len:
            logger.warning("Token indices sequence length is longer than the specified maximum sequence length "
                           "for this model ({} > {}). Running this sequence through the model will result in "
                           "indexing errors".format(len(ids), self.max_len))
        return ids

684
    def _convert_token_to_id_with_added_voc(self, token):
685
686
687
        if token is None:
            return None

688
689
690
691
692
        if token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        return self._convert_token_to_id(token)

    def _convert_token_to_id(self, token):
thomwolf's avatar
thomwolf committed
693
694
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
695
696
697
698
699
700
701
702
703
    def encode(self,
                text,
                text_pair=None,
                add_special_tokens=False,
                max_length=None,
                stride=0,
                truncate_first_sequence=True,
                return_tensors=None,
                **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
704
705
        """
        Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
706

LysandreJik's avatar
Doc  
LysandreJik committed
707
708
709
        Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``.

        Args:
LysandreJik's avatar
LysandreJik committed
710
711
712
713
714
715
            text: The first sequence to be encoded. This can be a string, a list of strings (tokenized string using
                the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
                method)
            text_pair: Optional second sequence to be encoded. This can be a string, a list of strings (tokenized
                string using the `tokenize` method) or a list of integers (tokenized string ids using the
                `convert_tokens_to_ids` method)
LysandreJik's avatar
Doc  
LysandreJik committed
716
717
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
thomwolf's avatar
thomwolf committed
718
719
720
721
722
723
724
725
            max_length: if set to a number, will limit the total sequence returned so that it has a maximum length.
                If there are overflowing tokens, those will be added to the returned dictionary
            stride: if set to a number along with max_length, the overflowing tokens returned will contain some tokens
                from the main sequence returned. The value of this argument defined the number of additional tokens.
            truncate_first_sequence: if there is a specified max_length, this flag will choose which sequence
                will be truncated.
            return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant
                or PyTorch torch.Tensor instead of a list of python integers.
thomwolf's avatar
thomwolf committed
726
            **kwargs: passed to the `self.tokenize()` method
727
        """
thomwolf's avatar
thomwolf committed
728
729
730
731
732
733
734
735
        encoded_inputs = self.encode_plus(text,
                                          text_pair=text_pair,
                                          max_length=max_length,
                                          add_special_tokens=add_special_tokens,
                                          stride=stride,
                                          truncate_first_sequence=truncate_first_sequence,
                                          return_tensors=return_tensors,
                                          **kwargs)
thomwolf's avatar
thomwolf committed
736
737

        return encoded_inputs["input_ids"]
738

739
740
741
742
743
744
    def encode_plus(self,
                    text,
                    text_pair=None,
                    add_special_tokens=False,
                    max_length=None,
                    stride=0,
LysandreJik's avatar
LysandreJik committed
745
                    truncate_first_sequence=True,
thomwolf's avatar
thomwolf committed
746
                    return_tensors=None,
747
                    **kwargs):
748
        """
thomwolf's avatar
thomwolf committed
749
750
        Returns a dictionary containing the encoded sequence or sequence pair and additional informations:
        the mask for sequence classification and the overflowing elements if a ``max_length`` is specified.
LysandreJik's avatar
Doc  
LysandreJik committed
751
752

        Args:
LysandreJik's avatar
LysandreJik committed
753
754
755
756
757
758
            text: The first sequence to be encoded. This can be a string, a list of strings (tokenized string using
                the `tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
                method)
            text_pair: Optional second sequence to be encoded. This can be a string, a list of strings (tokenized
                string using the `tokenize` method) or a list of integers (tokenized string ids using the
                `convert_tokens_to_ids` method)
LysandreJik's avatar
Doc  
LysandreJik committed
759
760
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
761
            max_length: if set to a number, will limit the total sequence returned so that it has a maximum length.
LysandreJik's avatar
LysandreJik committed
762
763
764
                If there are overflowing tokens, those will be added to the returned dictionary
            stride: if set to a number along with max_length, the overflowing tokens returned will contain some tokens
                from the main sequence returned. The value of this argument defined the number of additional tokens.
LysandreJik's avatar
LysandreJik committed
765
            truncate_first_sequence: if there is a specified max_length, this flag will choose which sequence
766
                will be truncated.
thomwolf's avatar
thomwolf committed
767
768
            return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant
                or PyTorch torch.Tensor instead of a list of python integers.
thomwolf's avatar
thomwolf committed
769
            **kwargs: passed to the `self.tokenize()` method
770
        """
771

LysandreJik's avatar
LysandreJik committed
772
773
        def get_input_ids(text):
            if isinstance(text, six.string_types):
thomwolf's avatar
thomwolf committed
774
                return self.convert_tokens_to_ids(self.tokenize(text, **kwargs))
LysandreJik's avatar
LysandreJik committed
775
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], six.string_types):
thomwolf's avatar
thomwolf committed
776
                return self.convert_tokens_to_ids(text)
LysandreJik's avatar
LysandreJik committed
777
            elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
thomwolf's avatar
thomwolf committed
778
                return text
779
            else:
LysandreJik's avatar
LysandreJik committed
780
781
                raise ValueError("Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers.")

thomwolf's avatar
thomwolf committed
782
783
        first_ids = get_input_ids(text)
        second_ids = get_input_ids(text_pair) if text_pair is not None else None
784

thomwolf's avatar
thomwolf committed
785
786
787
788
789
        return self.prepare_for_model(first_ids,
                                      pair_ids=second_ids,
                                      max_length=max_length,
                                      add_special_tokens=add_special_tokens,
                                      stride=stride,
thomwolf's avatar
thomwolf committed
790
791
                                      truncate_first_sequence=truncate_first_sequence,
                                      return_tensors=return_tensors)
792
793


thomwolf's avatar
thomwolf committed
794
795
    def prepare_for_model(self, ids, pair_ids=None, max_length=None, add_special_tokens=False, stride=0,
                          truncate_first_sequence=True, return_tensors=None):
LysandreJik's avatar
LysandreJik committed
796
        """
thomwolf's avatar
thomwolf committed
797
798
        Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model.
        It adds special tokens, truncates
LysandreJik's avatar
LysandreJik committed
799
800
801
802
803
804
        sequences if overflowing while taking into account the special tokens and manages a window stride for
        overflowing tokens

        Args:
            ids: list of tokenized input ids. Can be obtained from a string by chaining the
                `tokenize` and `convert_tokens_to_ids` methods.
thomwolf's avatar
thomwolf committed
805
            pair_ids: Optional second list of input ids. Can be obtained from a string by chaining the
LysandreJik's avatar
LysandreJik committed
806
807
                `tokenize` and `convert_tokens_to_ids` methods.
            max_length: maximum length of the returned list. Will truncate by taking into account the special tokens.
thomwolf's avatar
thomwolf committed
808
809
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
LysandreJik's avatar
LysandreJik committed
810
811
            stride: window stride for overflowing tokens. Can be useful for edge effect removal when using sequential
                list of inputs.
thomwolf's avatar
thomwolf committed
812
813
814
            truncate_first_sequence: if set to `True` and an optional second list of input ids is provided,
                alongside a specified `max_length`, will truncate the first sequence if the total size is superior
                than the specified `max_length`. If set to `False`, will truncate the second sequence instead.
thomwolf's avatar
thomwolf committed
815
816
            return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant
                or PyTorch torch.Tensor instead of a list of python integers.
LysandreJik's avatar
LysandreJik committed
817
818
819
820

        Return:
            a dictionary containing the `input_ids` as well as the `overflowing_tokens` if a `max_length` was given.
        """
thomwolf's avatar
thomwolf committed
821
822
823
        pair = bool(pair_ids is not None)
        len_ids = len(ids)
        len_pair_ids = len(pair_ids) if pair else 0
824

thomwolf's avatar
thomwolf committed
825
        encoded_inputs = {}
826
        if max_length:
thomwolf's avatar
thomwolf committed
827
828
            n_added_tokens = self.num_added_tokens(pair=pair) if add_special_tokens else 0
            if pair and n_added_tokens + (len_pair_ids if truncate_first_sequence else len_ids) >= max_length:
829
                logger.warning(
thomwolf's avatar
thomwolf committed
830
831
                    "You supplied a pair of sequence in which the sequence that will not be truncated is longer than the maximum specified length."
                    "This pair of sequences will not be truncated.")
thomwolf's avatar
thomwolf committed
832
            else:
thomwolf's avatar
thomwolf committed
833
834
835
836
837
838
839
                if n_added_tokens + len_ids + len_pair_ids > max_length:
                    if truncate_first_sequence or not pair:
                        encoded_inputs["overflowing_tokens"] = ids[max_length - len_pair_ids - n_added_tokens - stride:]
                        ids = ids[:max_length - len_pair_ids - n_added_tokens]
                    elif not truncate_first_sequence and pair:
                        encoded_inputs["overflowing_tokens"] = pair_ids[max_length - len_ids - n_added_tokens - stride:]
                        pair_ids = pair_ids[:max_length - len_ids - n_added_tokens]
LysandreJik's avatar
LysandreJik committed
840
                    else:
thomwolf's avatar
thomwolf committed
841
842
843
844
845
846
847
848
849
                        logger.warning(
                            "Cannot truncate second sequence as it is not provided. No truncation.")

        if add_special_tokens:
            sequence = self.add_special_tokens_sequence_pair(ids, pair_ids) if pair else self.add_special_tokens_single_sequence(ids)
            token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) if pair else [0] * len(sequence)
        else:
            sequence = ids + pair_ids if pair else ids
            token_type_ids = [0] * len(ids) + ([1] * len(pair_ids) if pair else [])
850

thomwolf's avatar
thomwolf committed
851
852
853
        if return_tensors == 'tf' and is_tf_available():
            sequence = tf.constant(sequence)
            token_type_ids = tf.constant(token_type_ids)
thomwolf's avatar
thomwolf committed
854
855
856
857
858
        elif return_tensors == 'pt' and is_torch_available():
            sequence = torch.tensor(sequence)
            token_type_ids = torch.tensor(token_type_ids)
        elif return_tensors is not None:
            logger.warning("Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available.".format(return_tensors))
thomwolf's avatar
thomwolf committed
859

thomwolf's avatar
thomwolf committed
860
861
        encoded_inputs["input_ids"] = sequence
        encoded_inputs["token_type_ids"] = token_type_ids
862

thomwolf's avatar
thomwolf committed
863
        return encoded_inputs
thomwolf's avatar
thomwolf committed
864

thomwolf's avatar
thomwolf committed
865
    def create_token_type_ids_from_sequences(self, token_ids_0, token_ids_1):
866
        logger.warning("This tokenizer does not make use of special tokens.")
thomwolf's avatar
thomwolf committed
867
        return [0] * len(token_ids_0) + [1] * len(token_ids_1)
868

869
    def add_special_tokens_single_sequence(self, token_ids):
LysandreJik's avatar
LysandreJik committed
870
871
        logger.warning("This tokenizer does not make use of special tokens. The sequence has been returned with no modification.")
        return token_ids
872

873
    def add_special_tokens_sequence_pair(self, token_ids_0, token_ids_1):
LysandreJik's avatar
LysandreJik committed
874
875
        logger.warning("This tokenizer does not make use of special tokens. The two sequences have been concatenated.")
        return token_ids_0 + token_ids_1
876

877
878
879
880
881
882
883
884
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """ Converts a single index or a sequence of indices (integers) in a token "
            (resp.) a sequence of tokens (str/unicode), using the vocabulary and added tokens.

            Args:
                skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
        """
        if isinstance(ids, int):
885
886
887
888
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]
            else:
                return self._convert_id_to_token(ids)
889
890
        tokens = []
        for index in ids:
thomwolf's avatar
thomwolf committed
891
            if skip_special_tokens and index in self.all_special_ids:
892
893
894
895
896
897
898
899
                continue
            if index in self.added_tokens_decoder:
                tokens.append(self.added_tokens_decoder[index])
            else:
                tokens.append(self._convert_id_to_token(index))
        return tokens

    def _convert_id_to_token(self, index):
thomwolf's avatar
thomwolf committed
900
901
        raise NotImplementedError

902
903
904
905
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string.
            The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
            but we often want to remove sub-word tokenization artifacts at the same time.
906
        """
907
        return ' '.join(self.convert_ids_to_tokens(tokens))
908
909

    def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
LysandreJik's avatar
Doc  
LysandreJik committed
910
911
912
        """
        Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
        with options to remove special tokens and clean up tokenization spaces.
913
        Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``.
914
915
        """
        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
thomwolf's avatar
thomwolf committed
916
917
918
919
920
921
922
923
924
925
926
927
928

        # To avoid mixing byte-level and unicode for byte-level BPT
        # we need to build string separatly for added tokens and byte-level tokens
        # cf. https://github.com/huggingface/pytorch-transformers/issues/1133
        sub_texts = []
        current_sub_text = []
        for token in filtered_tokens:
            if skip_special_tokens and token in self.all_special_ids:
                continue
            if token in self.added_tokens_encoder:
                if current_sub_text:
                    sub_texts.append(self.convert_tokens_to_string(current_sub_text))
                    current_sub_text = []
929
                sub_texts.append(" " + token)
thomwolf's avatar
thomwolf committed
930
931
932
933
934
            else:
                current_sub_text.append(token)
        if current_sub_text:
            sub_texts.append(self.convert_tokens_to_string(current_sub_text))
        text = ''.join(sub_texts)
935

936
937
938
        if self._sep_token is not None and self._sep_token in text:
            text = text.replace(self._cls_token, self._sep_token)
            split_text = list(filter(lambda sentence: len(sentence) > 0, text.split(self._sep_token)))
939
940
941
942
943
944
945
946
947
948
949
            if clean_up_tokenization_spaces:
                clean_text = [self.clean_up_tokenization(text) for text in split_text]
                return clean_text
            else:
                return split_text
        else:
            if clean_up_tokenization_spaces:
                clean_text = self.clean_up_tokenization(text)
                return clean_text
            else:
                return text
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970

    @property
    def special_tokens_map(self):
        """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their
            values ('<unk>', '<cls>'...)
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = attr_value
        return set_attr

    @property
    def all_special_tokens(self):
        """ List all the special tokens ('<unk>', '<cls>'...) mapped to class attributes
            (cls_token, unk_token...).
        """
        all_toks = []
        set_attr = self.special_tokens_map
        for attr_value in set_attr.values():
epwalsh's avatar
epwalsh committed
971
            all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value])
972
973
974
975
976
977
978
979
980
        all_toks = list(set(all_toks))
        return all_toks

    @property
    def all_special_ids(self):
        """ List the vocabulary indices of the special tokens ('<unk>', '<cls>'...) mapped to
            class attributes (cls_token, unk_token...).
        """
        all_toks = self.all_special_tokens
981
        all_ids = list(self._convert_token_to_id(t) for t in all_toks)
982
983
        return all_ids

thomwolf's avatar
thomwolf committed
984
985
    @staticmethod
    def clean_up_tokenization(out_string):
986
987
        """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms.
        """
thomwolf's avatar
thomwolf committed
988
989
990
991
        out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
                        ).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
                        ).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
        return out_string