"...lm-evaluation-harness.git" did not exist on "e50c8c70dafff024672b5017f107217468d4baa6"
tokenization_utils.py 44.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging
import os
21
22
import json
import six
23
import copy
24
25
26
27
28
29
from io import open

from .file_utils import cached_path

logger = logging.getLogger(__name__)

30
31
SPECIAL_TOKENS_MAP_FILE = 'special_tokens_map.json'
ADDED_TOKENS_FILE = 'added_tokens.json'
32
TOKENIZER_CONFIG_FILE = 'tokenizer_config.json'
33
34

class PreTrainedTokenizer(object):
35
36
    """ Base class for all tokenizers.
    Handle all the shared methods for tokenization and special tokens as well as methods dowloading/caching/loading pretrained tokenizers as well as adding tokens to the vocabulary.
37

38
    This class also contain the added tokens in a unified way on top of all tokenizers so we don't have to handle the specific vocabulary augmentation methods of the various underlying dictionary structures (BPE, sentencepiece...).
39

40
41
42
43
44
    Class attributes (overridden by derived classes):

        - ``vocab_files_names``: a python ``dict`` with, as keys, the ``__init__`` keyword name of each vocabulary file required by the model, and as associated values, the filename for saving the associated file (string).
        - ``pretrained_vocab_files_map``: a python ``dict of dict`` the high-level keys being the ``__init__`` keyword name of each vocabulary file required by the model, the low-level being the `short-cut-names` (string) of the pretrained models with, as associated values, the `url` (string) to the associated pretrained vocabulary file.
        - ``max_model_input_sizes``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, the maximum length of the sequence inputs of this model, or None if the model has no maximum input size.
45
        - ``pretrained_init_configuration``: a python ``dict`` with, as keys, the `short-cut-names` (string) of the pretrained models, and as associated values, a dictionnary of specific arguments to pass to the ``__init__``method of the tokenizer class for this pretrained model when loading the tokenizer with the ``from_pretrained()`` method.
46
47
48

    Parameters:

thomwolf's avatar
thomwolf committed
49
        - ``bos_token``: (`Optional`) string: a beginning of sentence token. Will be associated to ``self.bos_token`` and ``self.bos_token_id``
50

thomwolf's avatar
thomwolf committed
51
        - ``eos_token``: (`Optional`) string: an end of sentence token. Will be associated to ``self.eos_token`` and ``self.eos_token_id``
52

thomwolf's avatar
thomwolf committed
53
        - ``unk_token``: (`Optional`) string: an unknown token. Will be associated to ``self.unk_token`` and ``self.unk_token_id``
54

thomwolf's avatar
thomwolf committed
55
        - ``sep_token``: (`Optional`) string: a separation token (e.g. to separate context and query in an input sequence). Will be associated to ``self.sep_token`` and ``self.sep_token_id``
56

thomwolf's avatar
thomwolf committed
57
        - ``pad_token``: (`Optional`) string: a padding token. Will be associated to ``self.pad_token`` and ``self.pad_token_id``
58

thomwolf's avatar
thomwolf committed
59
        - ``cls_token``: (`Optional`) string: a classification token (e.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model). Will be associated to ``self.cls_token`` and ``self.cls_token_id``
60

thomwolf's avatar
thomwolf committed
61
        - ``mask_token``: (`Optional`) string: a masking token (e.g. when training a model with masked-language modeling). Will be associated to ``self.mask_token`` and ``self.mask_token_id``
62

thomwolf's avatar
thomwolf committed
63
        - ``additional_special_tokens``: (`Optional`) list: a list of additional special tokens. Adding all special tokens here ensure they won't be split by the tokenization process. Will be associated to ``self.additional_special_tokens`` and ``self.additional_special_tokens_ids``
64
65
66
    """
    vocab_files_names = {}
    pretrained_vocab_files_map = {}
67
    pretrained_init_configuration = {}
68
69
    max_model_input_sizes = {}

70
71
72
73
74
75
    SPECIAL_TOKENS_ATTRIBUTES = ["bos_token", "eos_token", "unk_token", "sep_token",
                                 "pad_token", "cls_token", "mask_token",
                                 "additional_special_tokens"]

    @property
    def bos_token(self):
76
        """ Beginning of sentence token (string). Log an error if used while not having been set. """
77
78
79
80
81
82
        if self._bos_token is None:
            logger.error("Using bos_token, but it is not set yet.")
        return self._bos_token

    @property
    def eos_token(self):
83
        """ End of sentence token (string). Log an error if used while not having been set. """
84
85
86
87
88
89
        if self._eos_token is None:
            logger.error("Using eos_token, but it is not set yet.")
        return self._eos_token

    @property
    def unk_token(self):
90
        """ Unknown token (string). Log an error if used while not having been set. """
91
92
93
94
95
96
        if self._unk_token is None:
            logger.error("Using unk_token, but it is not set yet.")
        return self._unk_token

    @property
    def sep_token(self):
97
        """ Separation token (string). E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
98
99
100
101
102
103
        if self._sep_token is None:
            logger.error("Using sep_token, but it is not set yet.")
        return self._sep_token

    @property
    def pad_token(self):
104
        """ Padding token (string). Log an error if used while not having been set. """
105
106
107
108
109
110
        if self._pad_token is None:
            logger.error("Using pad_token, but it is not set yet.")
        return self._pad_token

    @property
    def cls_token(self):
111
        """ Classification token (string). E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
112
113
114
115
116
117
        if self._cls_token is None:
            logger.error("Using cls_token, but it is not set yet.")
        return self._cls_token

    @property
    def mask_token(self):
118
        """ Mask token (string). E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
119
120
121
122
123
124
        if self._mask_token is None:
            logger.error("Using mask_token, but it is not set yet.")
        return self._mask_token

    @property
    def additional_special_tokens(self):
125
        """ All the additional special tokens you may want to use (list of strings). Log an error if used while not having been set. """
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        if self._additional_special_tokens is None:
            logger.error("Using additional_special_tokens, but it is not set yet.")
        return self._additional_special_tokens

    @bos_token.setter
    def bos_token(self, value):
        self._bos_token = value

    @eos_token.setter
    def eos_token(self, value):
        self._eos_token = value

    @unk_token.setter
    def unk_token(self, value):
        self._unk_token = value

    @sep_token.setter
    def sep_token(self, value):
        self._sep_token = value

    @pad_token.setter
    def pad_token(self, value):
        self._pad_token = value

    @cls_token.setter
    def cls_token(self, value):
        self._cls_token = value

    @mask_token.setter
    def mask_token(self, value):
        self._mask_token = value

    @additional_special_tokens.setter
    def additional_special_tokens(self, value):
        self._additional_special_tokens = value

162
163
164
    @property
    def bos_token_id(self):
        """ Id of the beginning of sentence token in the vocabulary. Log an error if used while not having been set. """
165
        return self.convert_tokens_to_ids(self.bos_token)
166
167
168
169

    @property
    def eos_token_id(self):
        """ Id of the end of sentence token in the vocabulary. Log an error if used while not having been set. """
170
        return self.convert_tokens_to_ids(self.eos_token)
171
172

    @property
maru0kun's avatar
maru0kun committed
173
    def unk_token_id(self):
174
        """ Id of the unknown token in the vocabulary. Log an error if used while not having been set. """
175
        return self.convert_tokens_to_ids(self.unk_token)
176
177
178
179

    @property
    def sep_token_id(self):
        """ Id of the separation token in the vocabulary. E.g. separate context and query in an input sequence. Log an error if used while not having been set. """
180
        return self.convert_tokens_to_ids(self.sep_token)
181
182
183
184

    @property
    def pad_token_id(self):
        """ Id of the padding token in the vocabulary. Log an error if used while not having been set. """
185
        return self.convert_tokens_to_ids(self.pad_token)
186
187
188
189

    @property
    def cls_token_id(self):
        """ Id of the classification token in the vocabulary. E.g. to extract a summary of an input sequence leveraging self-attention along the full depth of the model. Log an error if used while not having been set. """
190
        return self.convert_tokens_to_ids(self.cls_token)
191
192
193
194

    @property
    def mask_token_id(self):
        """ Id of the mask token in the vocabulary. E.g. when training a model with masked-language modeling. Log an error if used while not having been set. """
195
        return self.convert_tokens_to_ids(self.mask_token)
196
197
198
199

    @property
    def additional_special_tokens_ids(self):
        """ Ids of all the additional special tokens in the vocabulary (list of integers). Log an error if used while not having been set. """
200
        return self.convert_tokens_to_ids(self.additional_special_tokens)
201

202
203
204
205
206
207
208
209
210
211
212
    def __init__(self, max_len=None, **kwargs):
        self._bos_token = None
        self._eos_token = None
        self._unk_token = None
        self._sep_token = None
        self._pad_token = None
        self._cls_token = None
        self._mask_token = None
        self._additional_special_tokens = []

        self.max_len = max_len if max_len is not None else int(1e12)
213
214

        # Added tokens
215
216
217
        self.added_tokens_encoder = {}
        self.added_tokens_decoder = {}

218
219
220
221
        # inputs and kwargs for saving and re-loading (see ``from_pretrained`` and ``save_pretrained``)
        self.init_inputs = ()
        self.init_kwargs = {}

222
        for key, value in kwargs.items():
223
            if key in self.SPECIAL_TOKENS_ATTRIBUTES:
224
225
226
227
                if key == 'additional_special_tokens':
                    assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                else:
                    assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
228
229
230
                setattr(self, key, value)


231
232
    @classmethod
    def from_pretrained(cls, *inputs, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
233
234
        r"""
        Instantiate a :class:`~pytorch_transformers.PreTrainedTokenizer` (or a derived class) from a predefined tokenizer.
235

LysandreJik's avatar
Doc  
LysandreJik committed
236
        Args:
237
238
239
240
241
242
243
244
245
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.

            cache_dir: (`optional`) string:
                Path to a directory in which a downloaded predefined tokenizer vocabulary files should be cached if the standard cache should not be used.

246
247
248
            force_download: (`optional`) boolean, default False:
                Force to (re-)download the vocabulary files and override the cached versions if they exists.

249
250
251
252
            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
            inputs: (`optional`) positional arguments: will be passed to the Tokenizer ``__init__`` method.

            kwargs: (`optional`) keyword arguments: will be passed to the Tokenizer ``__init__`` method. Can be used to set special tokens like ``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``, ``additional_special_tokens``. See parameters in the doc string of :class:`~pytorch_transformers.PreTrainedTokenizer` for details.

        Examples::

            # We can't instantiate directly the base class `PreTrainedTokenizer` so let's show our examples on a derived class: BertTokenizer

            # Download vocabulary from S3 and cache.
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

            # If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')

            # If the tokenizer uses a single vocabulary file, you can point directly to this file
            tokenizer = BertTokenizer.from_pretrained('./test/saved_model/my_vocab.txt')

            # You can link tokens to special vocabulary when instantiating
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', unk_token='<unk>')
            # You should be sure '<unk>' is in the vocabulary when doing that.
            # Otherwise use tokenizer.add_special_tokens({'unk_token': '<unk>'}) instead)
            assert tokenizer.unk_token == '<unk>'

        """
277
278
        return cls._from_pretrained(*inputs, **kwargs)

279

280
    @classmethod
281
    def _from_pretrained(cls, pretrained_model_name_or_path, *init_inputs, **kwargs):
thomwolf's avatar
thomwolf committed
282
        cache_dir = kwargs.pop('cache_dir', None)
283
        force_download = kwargs.pop('force_download', False)
284
        proxies = kwargs.pop('proxies', None)
thomwolf's avatar
thomwolf committed
285

286
287
        s3_models = list(cls.max_model_input_sizes.keys())
        vocab_files = {}
288
        init_configuration = {}
289
        if pretrained_model_name_or_path in s3_models:
thomwolf's avatar
thomwolf committed
290
            # Get the vocabulary from AWS S3 bucket
291
292
            for file_id, map_list in cls.pretrained_vocab_files_map.items():
                vocab_files[file_id] = map_list[pretrained_model_name_or_path]
293
294
            if cls.pretrained_init_configuration and pretrained_model_name_or_path in cls.pretrained_init_configuration:
                init_configuration = cls.pretrained_init_configuration[pretrained_model_name_or_path]
295
        else:
thomwolf's avatar
thomwolf committed
296
            # Get the vocabulary from local files
297
298
299
300
301
            logger.info(
                "Model name '{}' not found in model shortcut name list ({}). "
                "Assuming '{}' is a path or url to a directory containing tokenizer files.".format(
                    pretrained_model_name_or_path, ', '.join(s3_models),
                    pretrained_model_name_or_path))
thomwolf's avatar
thomwolf committed
302
303
304

            # Look for the tokenizer main vocabulary files
            for file_id, file_name in cls.vocab_files_names.items():
305
                if os.path.isdir(pretrained_model_name_or_path):
thomwolf's avatar
thomwolf committed
306
                    # If a directory is provided we look for the standard filenames
307
308
                    full_file_name = os.path.join(pretrained_model_name_or_path, file_name)
                else:
thomwolf's avatar
thomwolf committed
309
                    # If a path to a file is provided we use it (will only work for non-BPE tokenizer using a single vocabulary file)
310
311
                    full_file_name = pretrained_model_name_or_path
                if not os.path.exists(full_file_name):
312
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
313
314
                    full_file_name = None
                vocab_files[file_id] = full_file_name
thomwolf's avatar
thomwolf committed
315
316

            # Look for the additional tokens files
317
318
319
320
            additional_files_names = {'added_tokens_file': ADDED_TOKENS_FILE,
                                      'special_tokens_map_file': SPECIAL_TOKENS_MAP_FILE,
                                      'tokenizer_config_file': TOKENIZER_CONFIG_FILE,
                                      }
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326

            # If a path to a file was provided, get the parent directory
            saved_directory = pretrained_model_name_or_path
            if os.path.exists(saved_directory) and not os.path.isdir(saved_directory):
                saved_directory = os.path.dirname(saved_directory)

327
            for file_id, file_name in additional_files_names.items():
thomwolf's avatar
thomwolf committed
328
329
330
331
332
333
                full_file_name = os.path.join(saved_directory, file_name)
                if not os.path.exists(full_file_name):
                    logger.info("Didn't find file {}. We won't load it.".format(full_file_name))
                    full_file_name = None
                vocab_files[file_id] = full_file_name

334
335
336
337
338
339
340
341
            if all(full_file_name is None for full_file_name in vocab_files.values()):
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find tokenizer files"
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, ))
                return None
342
343

        # Get files from url, cache, or disk depending on the case
344
345
346
347
348
349
        try:
            resolved_vocab_files = {}
            for file_id, file_path in vocab_files.items():
                if file_path is None:
                    resolved_vocab_files[file_id] = None
                else:
350
                    resolved_vocab_files[file_id] = cached_path(file_path, cache_dir=cache_dir, force_download=force_download, proxies=proxies)
351
        except EnvironmentError as e:
352
353
354
355
356
357
358
359
360
            if pretrained_model_name_or_path in s3_models:
                logger.error("Couldn't reach server to download vocabulary.")
            else:
                logger.error(
                    "Model name '{}' was not found in model name list ({}). "
                    "We assumed '{}' was a path or url but couldn't find files {} "
                    "at this path or url.".format(
                        pretrained_model_name_or_path, ', '.join(s3_models),
                        pretrained_model_name_or_path, str(vocab_files.keys())))
361
            raise e
362
363
364
365
366
367
368
369

        for file_id, file_path in vocab_files.items():
            if file_path == resolved_vocab_files[file_id]:
                logger.info("loading file {}".format(file_path))
            else:
                logger.info("loading file {} from cache at {}".format(
                    file_path, resolved_vocab_files[file_id]))

370
371
372
373
374
        # Prepare tokenizer initialization kwargs
        # Did we saved some inputs and kwargs to reload ?
        tokenizer_config_file = resolved_vocab_files.pop('tokenizer_config_file', None)
        if tokenizer_config_file is not None:
            init_kwargs = json.load(open(tokenizer_config_file, encoding="utf-8"))
375
            saved_init_inputs = init_kwargs.pop('init_inputs', ())
376
377
378
379
380
381
            if not init_inputs:
                init_inputs = saved_init_inputs
        else:
            init_kwargs = init_configuration

        # Update with newly provided kwargs
382
383
        init_kwargs.update(kwargs)

384
        # Set max length if needed
385
386
387
388
        if pretrained_model_name_or_path in cls.max_model_input_sizes:
            # if we're using a pretrained model, ensure the tokenizer
            # wont index sequences longer than the number of positional embeddings
            max_len = cls.max_model_input_sizes[pretrained_model_name_or_path]
389
            if max_len is not None and isinstance(max_len, (int, float)):
390
                init_kwargs['max_len'] = min(init_kwargs.get('max_len', int(1e12)), max_len)
391

392
        # Merge resolved_vocab_files arguments in init_kwargs.
393
394
        added_tokens_file = resolved_vocab_files.pop('added_tokens_file', None)
        special_tokens_map_file = resolved_vocab_files.pop('special_tokens_map_file', None)
thomwolf's avatar
thomwolf committed
395
        for args_name, file_path in resolved_vocab_files.items():
396
397
            if args_name not in init_kwargs:
                init_kwargs[args_name] = file_path
398
399
400
        if special_tokens_map_file is not None:
            special_tokens_map = json.load(open(special_tokens_map_file, encoding="utf-8"))
            for key, value in special_tokens_map.items():
401
402
                if key not in init_kwargs:
                    init_kwargs[key] = value
thomwolf's avatar
thomwolf committed
403

404
        # Instantiate tokenizer.
405
406
407
408
409
        tokenizer = cls(*init_inputs, **init_kwargs)

        # Save inputs and kwargs for saving and re-loading with ``save_pretrained``
        tokenizer.init_inputs = init_inputs
        tokenizer.init_kwargs = init_kwargs
410

411
412
        # Add supplementary tokens.
        if added_tokens_file is not None:
thomwolf's avatar
thomwolf committed
413
            added_tok_encoder = json.load(open(added_tokens_file, encoding="utf-8"))
414
415
416
417
            added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
            tokenizer.added_tokens_encoder.update(added_tok_encoder)
            tokenizer.added_tokens_decoder.update(added_tok_decoder)

418
419
        return tokenizer

thomwolf's avatar
thomwolf committed
420

421
    def save_pretrained(self, save_directory):
422
423
424
425
426
427
428
        """ Save the tokenizer vocabulary files together with:
                - added tokens,
                - special-tokens-to-class-attributes-mapping,
                - tokenizer instantiation positional and keywords inputs (e.g. do_lower_case for Bert).

            This won't save modifications other than (added tokens and special token mapping) you may have
            applied to the tokenizer after the instantion (e.g. modifying tokenizer.do_lower_case after creation).
429
430

            This method make sure the full tokenizer can then be re-loaded using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
431
432
433
434
435
436
437
        """
        if not os.path.isdir(save_directory):
            logger.error("Saving directory ({}) should be a directory".format(save_directory))
            return

        special_tokens_map_file = os.path.join(save_directory, SPECIAL_TOKENS_MAP_FILE)
        added_tokens_file = os.path.join(save_directory, ADDED_TOKENS_FILE)
438
439
440
441
        tokenizer_config_file = os.path.join(save_directory, TOKENIZER_CONFIG_FILE)

        tokenizer_config = copy.deepcopy(self.init_kwargs)
        tokenizer_config['init_inputs'] = copy.deepcopy(self.init_inputs)
442
443
        for file_id in self.vocab_files_names.keys():
            tokenizer_config.pop(file_id, None)
444
445
446

        with open(tokenizer_config_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(tokenizer_config, ensure_ascii=False))
447
448
449
450
451

        with open(special_tokens_map_file, 'w', encoding='utf-8') as f:
            f.write(json.dumps(self.special_tokens_map, ensure_ascii=False))

        with open(added_tokens_file, 'w', encoding='utf-8') as f:
thomwolf's avatar
thomwolf committed
452
            if self.added_tokens_encoder:
453
                out_str = json.dumps(self.added_tokens_encoder, ensure_ascii=False)
thomwolf's avatar
thomwolf committed
454
455
456
            else:
                out_str = u"{}"
            f.write(out_str)
457
458
459
460
461
462
463

        vocab_files = self.save_vocabulary(save_directory)

        return vocab_files + (special_tokens_map_file, added_tokens_file)


    def save_vocabulary(self, save_directory):
464
        """ Save the tokenizer vocabulary to a directory. This method does *NOT* save added tokens
465
            and special token mappings.
466
467

            Please use :func:`~pytorch_transformers.PreTrainedTokenizer.save_pretrained` `()` to save the full Tokenizer state if you want to reload it using the :func:`~pytorch_transformers.PreTrainedTokenizer.from_pretrained` class method.
468
        """
thomwolf's avatar
thomwolf committed
469
470
        raise NotImplementedError

471
472

    def vocab_size(self):
473
        """ Size of the base vocabulary (without the added tokens) """
thomwolf's avatar
thomwolf committed
474
475
        raise NotImplementedError

476
477

    def __len__(self):
478
        """ Size of the full vocabulary with the added tokens """
479
480
481
482
        return self.vocab_size + len(self.added_tokens_encoder)


    def add_tokens(self, new_tokens):
LysandreJik's avatar
Doc  
LysandreJik committed
483
484
        """
        Add a list of new tokens to the tokenizer class. If the new tokens are not in the
485
486
        vocabulary, they are added to it with indices starting from length of the current vocabulary.

LysandreJik's avatar
Doc  
LysandreJik committed
487
488
        Args:
            new_tokens: list of string. Each string is a token to add. Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
489

LysandreJik's avatar
Doc  
LysandreJik committed
490
491
        Returns:
            Number of tokens added to the vocabulary.
492
493
494
495
496
497
498
499
500
501

        Examples::

            # Let's see how to increase the vocabulary of Bert model and tokenizer
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertModel.from_pretrained('bert-base-uncased')

            num_added_toks = tokenizer.add_tokens(['new_tok1', 'my_new-tok2'])
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.
502
503
504
505
506
507
        """
        if not new_tokens:
            return 0

        to_add_tokens = []
        for token in new_tokens:
508
            assert isinstance(token, str) or (six.PY2 and isinstance(token, unicode))
thomwolf's avatar
thomwolf committed
509
510
            if token != self.unk_token and \
                    self.convert_tokens_to_ids(token) == self.convert_tokens_to_ids(self.unk_token):
511
512
513
514
515
516
517
518
519
520
                to_add_tokens.append(token)
                logger.info("Adding %s to the vocabulary", token)

        added_tok_encoder = dict((tok, len(self) + i) for i, tok in enumerate(to_add_tokens))
        added_tok_decoder = {v:k for k, v in added_tok_encoder.items()}
        self.added_tokens_encoder.update(added_tok_encoder)
        self.added_tokens_decoder.update(added_tok_decoder)

        return len(to_add_tokens)

521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    def num_added_tokens(self, pair=False):
        """
        Returns the number of added tokens when encoding a sequence with special tokens.

        Note:
            This encodes inputs and checks the number of added tokens, and is therefore not efficient. Do not put this
            inside your training loop.

        Args:
            pair: Returns the number of added tokens in the case of a sequence pair if set to True, returns the
                number of added tokens in the case of a single sequence if set to False.

        Returns:
            Number of tokens added to sequences
        """

        if pair:
538
            initial_tokens_len = len(self.encode("This is a sequence") + self.encode("This is another"))
539
540
541
542
543
544
545
546
547
548
549
550
            final_tokens = self.encode("This is a sequence", "This is another", add_special_tokens=True)

            # In some models (e.g. GPT-2), there is no sequence pair encoding.
            if len(final_tokens) == 2:
                return 0
            else:
                final_tokens_len = len(final_tokens)
        else:
            initial_tokens_len = len(self.encode("This is a sequence"))
            final_tokens_len = len(self.encode("This is a sequence", add_special_tokens=True))

        return final_tokens_len - initial_tokens_len
551
552

    def add_special_tokens(self, special_tokens_dict):
LysandreJik's avatar
Doc  
LysandreJik committed
553
554
555
556
        """
        Add a dictionary of special tokens (eos, pad, cls...) to the encoder and link them
        to class attributes. If special tokens are NOT in the vocabulary, they are added
        to it (indexed starting from the last index of the current vocabulary).
557

thomwolf's avatar
thomwolf committed
558
559
560
561
562
563
564
        Using `add_special_tokens` will ensure your special tokens can be used in several ways:

        - special tokens are carefully handled by the tokenizer (they are never split)
        - you can easily refer to special tokens using tokenizer class attributes like `tokenizer.cls_token`. This makes it easy to develop model-agnostic training and fine-tuning scripts.

        When possible, special tokens are already registered for provided pretrained models (ex: BertTokenizer cls_token is already registered to be '[CLS]' and XLM's one is also registered to be '</s>')

LysandreJik's avatar
Doc  
LysandreJik committed
565
566
567
568
        Args:
            special_tokens_dict: dict of string. Keys should be in the list of predefined special attributes:
                [``bos_token``, ``eos_token``, ``unk_token``, ``sep_token``, ``pad_token``, ``cls_token``, ``mask_token``,
                ``additional_special_tokens``].
569

LysandreJik's avatar
Doc  
LysandreJik committed
570
                Tokens are only added if they are not already in the vocabulary (tested by checking if the tokenizer assign the index of the ``unk_token`` to them).
571

LysandreJik's avatar
Doc  
LysandreJik committed
572
573
        Returns:
            Number of tokens added to the vocabulary.
574
575
576
577
578
579
580
581
582
583
584
585
586
587

        Examples::

            # Let's see how to add a new classification token to GPT-2
            tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
            model = GPT2Model.from_pretrained('gpt2')

            special_tokens_dict = {'cls_token': '<CLS>'}

            num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
            print('We have added', num_added_toks, 'tokens')
            model.resize_token_embeddings(len(tokenizer))  # Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e. the length of the tokenizer.

            assert tokenizer.cls_token == '<CLS>'
588
589
590
591
        """
        if not special_tokens_dict:
            return 0

592
        added_tokens = 0
593
        for key, value in special_tokens_dict.items():
594
            assert key in self.SPECIAL_TOKENS_ATTRIBUTES
595
596
597
598
599
600
            if key == 'additional_special_tokens':
                assert isinstance(value, (list, tuple)) and all(isinstance(t, str) or (six.PY2 and isinstance(t, unicode)) for t in value)
                added_tokens += self.add_tokens(value)
            else:
                assert isinstance(value, str) or (six.PY2 and isinstance(value, unicode))
                added_tokens += self.add_tokens([value])
601
602
603
            logger.info("Assigning %s to the %s key of the tokenizer", value, key)
            setattr(self, key, value)

604
        return added_tokens
605
606
607
608
609
610
611
612

    def tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

            Take care of added tokens.
        """
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
        def split_on_token(tok, text):
            result = []
            split_text = text.split(tok)
            for i, sub_text in enumerate(split_text):
                sub_text = sub_text.strip()
                if i == 0 and not sub_text:
                    result += [tok]
                elif i == len(split_text) - 1:
                    if sub_text:
                        result += [sub_text]
                    else:
                        pass
                else:
                    if sub_text:
                        result += [sub_text]
                    result += [tok]
            return result

631
632
633
634
635
        def split_on_tokens(tok_list, text):
            if not text:
                return []
            if not tok_list:
                return self._tokenize(text, **kwargs)
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651

            tokenized_text = []
            text_list = [text]
            for tok in tok_list:
                tokenized_text = []
                for sub_text in text_list:
                    if sub_text not in self.added_tokens_encoder \
                            and sub_text not in self.all_special_tokens:
                        tokenized_text += split_on_token(tok, sub_text)
                    else:
                        tokenized_text += [sub_text]
                text_list = tokenized_text

            return sum((self._tokenize(token, **kwargs) if token not \
                    in self.added_tokens_encoder and token not in self.all_special_tokens \
                    else [token] for token in tokenized_text), [])
652

653
        added_tokens = list(self.added_tokens_encoder.keys()) + self.all_special_tokens
654
655
656
657
658
659
660
661
        tokenized_text = split_on_tokens(added_tokens, text)
        return tokenized_text

    def _tokenize(self, text, **kwargs):
        """ Converts a string in a sequence of tokens (string), using the tokenizer.
            Split in words for word-based vocabulary or sub-words for sub-word-based
            vocabularies (BPE/SentencePieces/WordPieces).

662
            Do NOT take care of added tokens.
663
        """
thomwolf's avatar
thomwolf committed
664
665
        raise NotImplementedError

666
    def convert_tokens_to_ids(self, tokens):
667
668
        """ Converts a single token, or a sequence of tokens, (str/unicode) in a single integer id
            (resp. a sequence of ids), using the vocabulary.
669
        """
670
671
672
        if tokens is None:
            return None

673
        if isinstance(tokens, str) or (six.PY2 and isinstance(tokens, unicode)):
674
            return self._convert_token_to_id_with_added_voc(tokens)
675
676
677

        ids = []
        for token in tokens:
678
            ids.append(self._convert_token_to_id_with_added_voc(token))
679
680
681
682
683
684
        if len(ids) > self.max_len:
            logger.warning("Token indices sequence length is longer than the specified maximum sequence length "
                           "for this model ({} > {}). Running this sequence through the model will result in "
                           "indexing errors".format(len(ids), self.max_len))
        return ids

685
    def _convert_token_to_id_with_added_voc(self, token):
686
687
688
        if token is None:
            return None

689
690
691
692
693
        if token in self.added_tokens_encoder:
            return self.added_tokens_encoder[token]
        return self._convert_token_to_id(token)

    def _convert_token_to_id(self, token):
thomwolf's avatar
thomwolf committed
694
695
        raise NotImplementedError

696
    def encode(self, text, text_pair=None, add_special_tokens=False, **kwargs):
LysandreJik's avatar
Doc  
LysandreJik committed
697
698
        """
        Converts a string in a sequence of ids (integer), using the tokenizer and vocabulary.
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726

        Same as doing ``self.convert_tokens_to_ids(self.tokenize(text))``.

        Args:
            text: The first sequence to be encoded.
            text_pair: Optional second sequence to be encoded.
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
        """
        if text_pair is None:
            if add_special_tokens:
                sequence_tokens = self.convert_tokens_to_ids(self.tokenize(text, **kwargs))
                return self.add_special_tokens_single_sentence(sequence_tokens)
            else:
                ids = self.convert_tokens_to_ids(self.tokenize(text, **kwargs))
                return ids

        first_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text, **kwargs)]
        second_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text_pair, **kwargs)]

        if add_special_tokens:
            return self.add_special_tokens_sentences_pair(first_sentence_tokens, second_sentence_tokens)
        else:
            logger.warning("No special tokens were added. The two sequences have been concatenated.")
            return first_sentence_tokens + second_sentence_tokens

    def encode_plus(self, text, text_pair=None, add_special_tokens=False, output_mask=False, max_length=None, **kwargs):
        """
LysandreJik's avatar
LysandreJik committed
727
728
        Returns a dictionary containing the encoded sequence or sequence pair. Other values can be returned by this
        method: the mask for sequence classification and the overflowing elements if a ``max_length`` is specified.
LysandreJik's avatar
Doc  
LysandreJik committed
729
730
731
732
733
734

        Args:
            text: The first sequence to be encoded.
            text_pair: Optional second sequence to be encoded.
            add_special_tokens: if set to ``True``, the sequences will be encoded with the special tokens relative
                to their model.
735
736
            output_mask: if set to ``True``, returns the text pair corresponding mask with 0 for the first sequence,
                and 1 for the second.
737
            max_length: if set to a number, will limit the total sequence returned so that it has a maximum length.
thomwolf's avatar
thomwolf committed
738
            **kwargs: passed to the `self.tokenize()` method
739
        """
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

        information = {}

        if text_pair is None:
            n_added_tokens = self.num_added_tokens()
            if add_special_tokens:
                sequence_tokens = self.convert_tokens_to_ids(self.tokenize(text, **kwargs))
                if max_length:
                    information["overflowing_tokens"] = sequence_tokens[max_length - n_added_tokens:]
                    sequence_tokens = sequence_tokens[:max_length - n_added_tokens]
                sequence = self.add_special_tokens_single_sentence(sequence_tokens)
            else:
                sequence_tokens = self.convert_tokens_to_ids(self.tokenize(text, **kwargs))
                if max_length:
                    information["overflowing_tokens"] = sequence_tokens[max_length:]
                    sequence_tokens = sequence_tokens[:max_length]
                sequence = sequence_tokens

            if output_mask:
                information["mask"] = [0] * len(sequence)

            information["sequence"] = sequence
        else:
            first_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text, **kwargs)]
            second_sentence_tokens = [self._convert_token_to_id(token) for token in self.tokenize(text_pair, **kwargs)]
            f_len, s_len = len(first_sentence_tokens), len(second_sentence_tokens)
            n_added_tokens = self.num_added_tokens(pair=True)

            if add_special_tokens:
                if max_length:
                    if len(first_sentence_tokens) + n_added_tokens >= max_length:
                        logger.warning("The first sequence is longer than the maximum specified length. This sequence will not be truncated.")
                    else:
                        if f_len + s_len + self.num_added_tokens(pair=True) > max_length:
                            information["overflowing_tokens"] = second_sentence_tokens[max_length - f_len - n_added_tokens:]
                            second_sentence_tokens = second_sentence_tokens[:max_length - f_len - n_added_tokens]

                encoded_sequence = self.add_special_tokens_sentences_pair(
                    first_sentence_tokens,
                    second_sentence_tokens,
                    output_mask
                )

                if output_mask:
                    sequence, information["mask"] = encoded_sequence
                else:
                    sequence = encoded_sequence

                information["sequence"] = sequence
            else:
                logger.warning("No special tokens were added. The two sequences have been concatenated.")
                sequence = first_sentence_tokens + second_sentence_tokens

                if max_length:
                    information["overflowing_tokens"] = sequence[max_length:]
                    sequence = sequence[:max_length]
                if output_mask:
                    information["mask"] = [0] * len(sequence)

                information["sequence"] = sequence

        return information

803
    def add_special_tokens_single_sentence(self, token_ids):
LysandreJik's avatar
LysandreJik committed
804
805
        logger.warning("This tokenizer does not make use of special tokens. The sequence has been returned with no modification.")
        return token_ids
806

807
    def add_special_tokens_sentences_pair(self, token_ids_0, token_ids_1, output_mask=False):
LysandreJik's avatar
LysandreJik committed
808
809
        logger.warning("This tokenizer does not make use of special tokens. The two sequences have been concatenated.")
        return token_ids_0 + token_ids_1
810

811
812
813
814
815
816
817
818
    def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
        """ Converts a single index or a sequence of indices (integers) in a token "
            (resp.) a sequence of tokens (str/unicode), using the vocabulary and added tokens.

            Args:
                skip_special_tokens: Don't decode special tokens (self.all_special_tokens). Default: False
        """
        if isinstance(ids, int):
819
820
821
822
            if ids in self.added_tokens_decoder:
                return self.added_tokens_decoder[ids]
            else:
                return self._convert_id_to_token(ids)
823
824
        tokens = []
        for index in ids:
thomwolf's avatar
thomwolf committed
825
            if skip_special_tokens and index in self.all_special_ids:
826
827
828
829
830
831
832
833
                continue
            if index in self.added_tokens_decoder:
                tokens.append(self.added_tokens_decoder[index])
            else:
                tokens.append(self._convert_id_to_token(index))
        return tokens

    def _convert_id_to_token(self, index):
thomwolf's avatar
thomwolf committed
834
835
        raise NotImplementedError

836
837
838
839
    def convert_tokens_to_string(self, tokens):
        """ Converts a sequence of tokens (string) in a single string.
            The most simple way to do it is ' '.join(self.convert_ids_to_tokens(token_ids))
            but we often want to remove sub-word tokenization artifacts at the same time.
840
        """
841
        return ' '.join(self.convert_ids_to_tokens(tokens))
842
843

    def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
LysandreJik's avatar
Doc  
LysandreJik committed
844
845
846
        """
        Converts a sequence of ids (integer) in a string, using the tokenizer and vocabulary
        with options to remove special tokens and clean up tokenization spaces.
847
        Similar to doing ``self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))``.
848
849
        """
        filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
thomwolf's avatar
thomwolf committed
850
851
852
853
854
855
856
857
858
859
860
861
862

        # To avoid mixing byte-level and unicode for byte-level BPT
        # we need to build string separatly for added tokens and byte-level tokens
        # cf. https://github.com/huggingface/pytorch-transformers/issues/1133
        sub_texts = []
        current_sub_text = []
        for token in filtered_tokens:
            if skip_special_tokens and token in self.all_special_ids:
                continue
            if token in self.added_tokens_encoder:
                if current_sub_text:
                    sub_texts.append(self.convert_tokens_to_string(current_sub_text))
                    current_sub_text = []
863
                sub_texts.append(" " + token)
thomwolf's avatar
thomwolf committed
864
865
866
867
868
            else:
                current_sub_text.append(token)
        if current_sub_text:
            sub_texts.append(self.convert_tokens_to_string(current_sub_text))
        text = ''.join(sub_texts)
869

870
871
872
        if self._sep_token is not None and self._sep_token in text:
            text = text.replace(self._cls_token, self._sep_token)
            split_text = list(filter(lambda sentence: len(sentence) > 0, text.split(self._sep_token)))
873
874
875
876
877
878
879
880
881
882
883
            if clean_up_tokenization_spaces:
                clean_text = [self.clean_up_tokenization(text) for text in split_text]
                return clean_text
            else:
                return split_text
        else:
            if clean_up_tokenization_spaces:
                clean_text = self.clean_up_tokenization(text)
                return clean_text
            else:
                return text
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904

    @property
    def special_tokens_map(self):
        """ A dictionary mapping special token class attribute (cls_token, unk_token...) to their
            values ('<unk>', '<cls>'...)
        """
        set_attr = {}
        for attr in self.SPECIAL_TOKENS_ATTRIBUTES:
            attr_value = getattr(self, "_" + attr)
            if attr_value:
                set_attr[attr] = attr_value
        return set_attr

    @property
    def all_special_tokens(self):
        """ List all the special tokens ('<unk>', '<cls>'...) mapped to class attributes
            (cls_token, unk_token...).
        """
        all_toks = []
        set_attr = self.special_tokens_map
        for attr_value in set_attr.values():
epwalsh's avatar
epwalsh committed
905
            all_toks = all_toks + (list(attr_value) if isinstance(attr_value, (list, tuple)) else [attr_value])
906
907
908
909
910
911
912
913
914
        all_toks = list(set(all_toks))
        return all_toks

    @property
    def all_special_ids(self):
        """ List the vocabulary indices of the special tokens ('<unk>', '<cls>'...) mapped to
            class attributes (cls_token, unk_token...).
        """
        all_toks = self.all_special_tokens
915
        all_ids = list(self._convert_token_to_id(t) for t in all_toks)
916
917
        return all_ids

thomwolf's avatar
thomwolf committed
918
919
    @staticmethod
    def clean_up_tokenization(out_string):
920
921
        """ Clean up a list of simple English tokenization artifacts like spaces before punctuations and abreviated forms.
        """
thomwolf's avatar
thomwolf committed
922
923
924
925
        out_string = out_string.replace(' .', '.').replace(' ?', '?').replace(' !', '!').replace(' ,', ','
                        ).replace(" ' ", "'").replace(" n't", "n't").replace(" 'm", "'m").replace(" do not", " don't"
                        ).replace(" 's", "'s").replace(" 've", "'ve").replace(" 're", "'re")
        return out_string