index.rst 24.8 KB
Newer Older
1
Transformers
Sylvain Gugger's avatar
Sylvain Gugger committed
2
=======================================================================================================================
3

4
State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.
thomwolf's avatar
thomwolf committed
5

6
7
8
🤗 Transformers (formerly known as `pytorch-transformers` and `pytorch-pretrained-bert`) provides general-purpose
architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural Language Understanding (NLU) and Natural
Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between
9
10
11
TensorFlow 2.0 and PyTorch.

This is the documentation of our repository `transformers <https://github.com/huggingface/transformers>`_.
12

LysandreJik's avatar
LysandreJik committed
13
Features
Sylvain Gugger's avatar
Sylvain Gugger committed
14
-----------------------------------------------------------------------------------------------------------------------
LysandreJik's avatar
LysandreJik committed
15
16
17
18

- High performance on NLU and NLG tasks
- Low barrier to entry for educators and practitioners

LysandreJik's avatar
LysandreJik committed
19
20
State-of-the-art NLP for everyone:

LysandreJik's avatar
LysandreJik committed
21
22
23
24
- Deep learning researchers
- Hands-on practitioners
- AI/ML/NLP teachers and educators

LysandreJik's avatar
LysandreJik committed
25
26
Lower compute costs, smaller carbon footprint:

LysandreJik's avatar
LysandreJik committed
27
28
29
30
- Researchers can share trained models instead of always retraining
- Practitioners can reduce compute time and production costs
- 8 architectures with over 30 pretrained models, some in more than 100 languages

LysandreJik's avatar
LysandreJik committed
31
32
Choose the right framework for every part of a model's lifetime:

LysandreJik's avatar
LysandreJik committed
33
34
35
36
37
- Train state-of-the-art models in 3 lines of code
- Deep interoperability between TensorFlow 2.0 and PyTorch models
- Move a single model between TF2.0/PyTorch frameworks at will
- Seamlessly pick the right framework for training, evaluation, production

Sylvain Gugger's avatar
Sylvain Gugger committed
38
39
Experimental support for Flax with a few models right now, expected to grow in the coming months.

LysandreJik's avatar
LysandreJik committed
40
Contents
Sylvain Gugger's avatar
Sylvain Gugger committed
41
-----------------------------------------------------------------------------------------------------------------------
LysandreJik's avatar
LysandreJik committed
42

Sylvain Gugger's avatar
Sylvain Gugger committed
43
44
45
46
The documentation is organized in five parts:

- **GET STARTED** contains a quick tour, the installation instructions and some useful information about our philosophy
  and a glossary.
Sylvain Gugger's avatar
Sylvain Gugger committed
47
- **USING 🤗 TRANSFORMERS** contains general tutorials on how to use the library.
Sylvain Gugger's avatar
Sylvain Gugger committed
48
- **ADVANCED GUIDES** contains more advanced guides that are more specific to a given script or part of the library.
Santiago Castro's avatar
Santiago Castro committed
49
- **RESEARCH** focuses on tutorials that have less to do with how to use the library but more about general research in
Sylvain Gugger's avatar
Sylvain Gugger committed
50
  transformers model
51
- The three last section contain the documentation of each public class and function, grouped in:
Sylvain Gugger's avatar
Sylvain Gugger committed
52

53
54
55
    - **MAIN CLASSES** for the main classes exposing the important APIs of the library.
    - **MODELS** for the classes and functions related to each model implemented in the library.
    - **INTERNAL HELPERS** for the classes and functions we use internally.
Sylvain Gugger's avatar
Sylvain Gugger committed
56

Sylvain Gugger's avatar
Sylvain Gugger committed
57
58
The library currently contains PyTorch, Tensorflow and Flax implementations, pretrained model weights, usage scripts
and conversion utilities for the following models:
59

60
61
62
..
    This list is updated automatically from the README with `make fix-copies`. Do not update manually!

63
64
65
66
67
68
1. :doc:`ALBERT <model_doc/albert>` (from Google Research and the Toyota Technological Institute at Chicago) released
   with the paper `ALBERT: A Lite BERT for Self-supervised Learning of Language Representations
   <https://arxiv.org/abs/1909.11942>`__, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
   Sharma, Radu Soricut.
2. :doc:`BART <model_doc/bart>` (from Facebook) released with the paper `BART: Denoising Sequence-to-Sequence
   Pre-training for Natural Language Generation, Translation, and Comprehension
69
70
   <https://arxiv.org/pdf/1910.13461.pdf>`__ by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
   Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
71
72
73
74
75
76
3. :doc:`BERT <model_doc/bert>` (from Google) released with the paper `BERT: Pre-training of Deep Bidirectional
   Transformers for Language Understanding <https://arxiv.org/abs/1810.04805>`__ by Jacob Devlin, Ming-Wei Chang,
   Kenton Lee and Kristina Toutanova.
4. :doc:`BERT For Sequence Generation <model_doc/bertgeneration>` (from Google) released with the paper `Leveraging
   Pre-trained Checkpoints for Sequence Generation Tasks <https://arxiv.org/abs/1907.12461>`__ by Sascha Rothe, Shashi
   Narayan, Aliaksei Severyn.
Lysandre's avatar
Lysandre committed
77
78
79
5. :doc:`Blenderbot <model_doc/blenderbot>` (from Facebook) released with the paper `Recipes for building an
   open-domain chatbot <https://arxiv.org/abs/2004.13637>`__ by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary
   Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
80
81
82
83
84
85
6. :doc:`CamemBERT <model_doc/camembert>` (from Inria/Facebook/Sorbonne) released with the paper `CamemBERT: a Tasty
   French Language Model <https://arxiv.org/abs/1911.03894>`__ by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz
   Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
7. :doc:`CTRL <model_doc/ctrl>` (from Salesforce) released with the paper `CTRL: A Conditional Transformer Language
   Model for Controllable Generation <https://arxiv.org/abs/1909.05858>`__ by Nitish Shirish Keskar*, Bryan McCann*,
   Lav R. Varshney, Caiming Xiong and Richard Socher.
Lysandre's avatar
Lysandre committed
86
87
88
8. :doc:`DeBERTa <model_doc/deberta>` (from Microsoft Research) released with the paper `DeBERTa: Decoding-enhanced
   BERT with Disentangled Attention <https://arxiv.org/abs/2006.03654>`__ by Pengcheng He, Xiaodong Liu, Jianfeng Gao,
   Weizhu Chen.
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
9. :doc:`DialoGPT <model_doc/dialogpt>` (from Microsoft Research) released with the paper `DialoGPT: Large-Scale
   Generative Pre-training for Conversational Response Generation <https://arxiv.org/abs/1911.00536>`__ by Yizhe Zhang,
   Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
10. :doc:`DistilBERT <model_doc/distilbert>` (from HuggingFace), released together with the paper `DistilBERT, a
    distilled version of BERT: smaller, faster, cheaper and lighter <https://arxiv.org/abs/1910.01108>`__ by Victor
    Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into `DistilGPT2
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, RoBERTa into `DistilRoBERTa
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__, Multilingual BERT into
    `DistilmBERT <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German
    version of DistilBERT.
11. :doc:`DPR <model_doc/dpr>` (from Facebook) released with the paper `Dense Passage Retrieval for Open-Domain
    Question Answering <https://arxiv.org/abs/2004.04906>`__ by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
    Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
12. :doc:`ELECTRA <model_doc/electra>` (from Google Research/Stanford University) released with the paper `ELECTRA:
    Pre-training text encoders as discriminators rather than generators <https://arxiv.org/abs/2003.10555>`__ by Kevin
    Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
13. :doc:`FlauBERT <model_doc/flaubert>` (from CNRS) released with the paper `FlauBERT: Unsupervised Language Model
    Pre-training for French <https://arxiv.org/abs/1912.05372>`__ by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne,
    Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
14. :doc:`Funnel Transformer <model_doc/funnel>` (from CMU/Google Brain) released with the paper `Funnel-Transformer:
    Filtering out Sequential Redundancy for Efficient Language Processing <https://arxiv.org/abs/2006.03236>`__ by
    Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
15. :doc:`GPT <model_doc/gpt>` (from OpenAI) released with the paper `Improving Language Understanding by Generative
    Pre-Training <https://blog.openai.com/language-unsupervised/>`__ by Alec Radford, Karthik Narasimhan, Tim Salimans
    and Ilya Sutskever.
16. :doc:`GPT-2 <model_doc/gpt2>` (from OpenAI) released with the paper `Language Models are Unsupervised Multitask
    Learners <https://blog.openai.com/better-language-models/>`__ by Alec Radford*, Jeffrey Wu*, Rewon Child, David
    Luan, Dario Amodei** and Ilya Sutskever**.
17. :doc:`LayoutLM <model_doc/layoutlm>` (from Microsoft Research Asia) released with the paper `LayoutLM: Pre-training
    of Text and Layout for Document Image Understanding <https://arxiv.org/abs/1912.13318>`__ by Yiheng Xu, Minghao Li,
    Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
18. :doc:`Longformer <model_doc/longformer>` (from AllenAI) released with the paper `Longformer: The Long-Document
    Transformer <https://arxiv.org/abs/2004.05150>`__ by Iz Beltagy, Matthew E. Peters, Arman Cohan.
19. :doc:`LXMERT <model_doc/lxmert>` (from UNC Chapel Hill) released with the paper `LXMERT: Learning Cross-Modality
    Encoder Representations from Transformers for Open-Domain Question Answering <https://arxiv.org/abs/1908.07490>`__
    by Hao Tan and Mohit Bansal.
20. :doc:`MarianMT <model_doc/marian>` Machine translation models trained using `OPUS <http://opus.nlpl.eu/>`__ data by
    Jörg Tiedemann. The `Marian Framework <https://marian-nmt.github.io/>`__ is being developed by the Microsoft
    Translator Team.
Sylvain Gugger's avatar
Sylvain Gugger committed
128
21. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
129
130
    Neural Machine Translation <https://arxiv.org/abs/2001.08210>`__ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
    Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
22. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
    text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir
    Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
23. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
135
136
    Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__> by Jingqing Zhang, Yao Zhao,
    Mohammad Saleh and Peter J. Liu.
Patrick von Platen's avatar
Patrick von Platen committed
137
24. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
Lysandre's avatar
Lysandre committed
138
139
    Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
    Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
Patrick von Platen's avatar
Patrick von Platen committed
140
25. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
141
    Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
Patrick von Platen's avatar
Patrick von Platen committed
142
26. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
143
144
    Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
    Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. ultilingual BERT into `DistilmBERT
145
146
    <https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German version of
    DistilBERT.
Patrick von Platen's avatar
Patrick von Platen committed
147
27. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP
Lysandre's avatar
Lysandre committed
148
149
    about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola, Albert E. Shaw, Ravi
    Krishna, and Kurt W. Keutzer.
Patrick von Platen's avatar
Patrick von Platen committed
150
28. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
151
152
    Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
    Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
Patrick von Platen's avatar
Patrick von Platen committed
153
29. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
154
155
    Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
    Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
Patrick von Platen's avatar
Patrick von Platen committed
156
30. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
157
    Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
Patrick von Platen's avatar
Patrick von Platen committed
158
31. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
Lysandre's avatar
Lysandre committed
159
160
    Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
    Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
Patrick von Platen's avatar
Patrick von Platen committed
161
32. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
162
163
164
    Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
    Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
    Zettlemoyer and Veselin Stoyanov.
Patrick von Platen's avatar
Patrick von Platen committed
165
33. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `​XLNet: Generalized Autoregressive
166
167
    Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
    Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
Patrick von Platen's avatar
Patrick von Platen committed
168
34. `Other community models <https://huggingface.co/models>`__, contributed by the `community
169
    <https://huggingface.co/users>`__.
LysandreJik's avatar
LysandreJik committed
170

Sylvain Gugger's avatar
Sylvain Gugger committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

The table below represents the current support in the library for each of those models, whether they have a Python
tokenizer (called "slow"). A "fast" tokenizer backed by the 🤗 Tokenizers library, whether they have support in PyTorch,
TensorFlow and/or Flax.

..
    This table is updated automatically from the auto modules with `make fix-copies`. Do not update manually!

.. rst-class:: center-aligned-table

+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            Model            | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
+=============================+================+================+=================+====================+==============+
|           ALBERT            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            BART             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            BERT             |       ✅       |       ✅       |       ✅        |         ✅         |      ✅      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Bert Generation       |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         Blenderbot          |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            CTRL             |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          CamemBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             DPR             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           DeBERTa           |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         DistilBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           ELECTRA           |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Encoder decoder       |       ❌       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
| FairSeq Machine-Translation |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          FlauBERT           |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|     Funnel Transformer      |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           LXMERT            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          LayoutLM           |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         Longformer          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           Marian            |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         MobileBERT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         OpenAI GPT          |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|        OpenAI GPT-2         |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           Pegasus           |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         ProphetNet          |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             RAG             |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          Reformer           |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|          RetriBERT          |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|           RoBERTa           |       ✅       |       ✅       |       ✅        |         ✅         |      ✅      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         SqueezeBERT         |       ✅       |       ✅       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             T5              |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|       Transformer-XL        |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             XLM             |       ✅       |       ❌       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|         XLM-RoBERTa         |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|        XLMProphetNet        |       ✅       |       ❌       |       ✅        |         ❌         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            XLNet            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|            mBART            |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+
|             mT5             |       ✅       |       ✅       |       ✅        |         ✅         |      ❌      |
+-----------------------------+----------------+----------------+-----------------+--------------------+--------------+


260
261
.. toctree::
    :maxdepth: 2
262
    :caption: Get started
263

Sylvain Gugger's avatar
Sylvain Gugger committed
264
    quicktour
265
    installation
Sylvain Gugger's avatar
Sylvain Gugger committed
266
    philosophy
Lysandre's avatar
Lysandre committed
267
    glossary
268
269
270

.. toctree::
    :maxdepth: 2
Sylvain Gugger's avatar
Sylvain Gugger committed
271
    :caption: Using 🤗 Transformers
272

Sylvain Gugger's avatar
Sylvain Gugger committed
273
274
    task_summary
    model_summary
Sylvain Gugger's avatar
Sylvain Gugger committed
275
    preprocessing
276
    training
277
    model_sharing
Sylvain Gugger's avatar
Sylvain Gugger committed
278
    tokenizer_summary
279
280
281
282
283
284
285
    multilingual

.. toctree::
    :maxdepth: 2
    :caption: Advanced guides

    pretrained_models
286
    examples
287
    custom_datasets
288
    notebooks
289
    converting_tensorflow_models
290
    migration
291
    contributing
292
    testing
Funtowicz Morgan's avatar
Funtowicz Morgan committed
293
    serialization
294
295
296
297
298
299

.. toctree::
    :maxdepth: 2
    :caption: Research

    bertology
300
    perplexity
301
    benchmarks
302

thomwolf's avatar
thomwolf committed
303
304
.. toctree::
    :maxdepth: 2
305
    :caption: Main Classes
thomwolf's avatar
thomwolf committed
306

Sylvain Gugger's avatar
Sylvain Gugger committed
307
    main_classes/callback
thomwolf's avatar
thomwolf committed
308
    main_classes/configuration
309
    main_classes/logging
thomwolf's avatar
thomwolf committed
310
311
    main_classes/model
    main_classes/optimizer_schedules
312
313
    main_classes/output
    main_classes/pipelines
LysandreJik's avatar
LysandreJik committed
314
    main_classes/processors
315
316
317
318
319
320
321
322
    main_classes/tokenizer
    main_classes/trainer

.. toctree::
    :maxdepth: 2
    :caption: Models

    model_doc/albert
thomwolf's avatar
thomwolf committed
323
    model_doc/auto
324
    model_doc/bart
325
    model_doc/bert
326
    model_doc/bertgeneration
Sam Shleifer's avatar
Sam Shleifer committed
327
    model_doc/blenderbot
Lysandre's avatar
Lysandre committed
328
    model_doc/camembert
329
    model_doc/ctrl
Pengcheng He's avatar
Pengcheng He committed
330
    model_doc/deberta
331
    model_doc/dialogpt
332
    model_doc/distilbert
Quentin Lhoest's avatar
Quentin Lhoest committed
333
    model_doc/dpr
334
335
336
    model_doc/electra
    model_doc/encoderdecoder
    model_doc/flaubert
337
    model_doc/fsmt
Sylvain Gugger's avatar
Sylvain Gugger committed
338
    model_doc/funnel
Minghao Li's avatar
Minghao Li committed
339
    model_doc/layoutlm
340
341
342
343
344
    model_doc/longformer
    model_doc/lxmert
    model_doc/marian
    model_doc/mbart
    model_doc/mobilebert
Patrick von Platen's avatar
Patrick von Platen committed
345
    model_doc/mt5
346
347
348
    model_doc/gpt
    model_doc/gpt2
    model_doc/pegasus
Weizhen's avatar
Weizhen committed
349
    model_doc/prophetnet
Sylvain Gugger's avatar
Sylvain Gugger committed
350
    model_doc/rag
351
352
353
    model_doc/reformer
    model_doc/retribert
    model_doc/roberta
354
    model_doc/squeezebert
355
356
357
    model_doc/t5
    model_doc/transformerxl
    model_doc/xlm
Weizhen's avatar
Weizhen committed
358
    model_doc/xlmprophetnet
359
360
361
362
363
364
365
    model_doc/xlmroberta
    model_doc/xlnet

.. toctree::
    :maxdepth: 2
    :caption: Internal Helpers

Sylvain Gugger's avatar
Sylvain Gugger committed
366
    internal/modeling_utils
367
    internal/pipelines_utils
368
    internal/tokenization_utils
Sylvain Gugger's avatar
Sylvain Gugger committed
369
    internal/trainer_utils
370
    internal/generation_utils