modeling_roberta.py 24.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RoBERTa model. """

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging

import torch
import torch.nn as nn
import torch.nn.functional as F
26
from torch.nn import CrossEntropyLoss, MSELoss
27
28
29
30
31

from pytorch_transformers.modeling_bert import (BertConfig, BertEmbeddings,
                                                BertLayerNorm, BertModel,
                                                BertPreTrainedModel, gelu)

LysandreJik's avatar
Doc  
LysandreJik committed
32
33
from pytorch_transformers.modeling_utils import add_start_docstrings

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
logger = logging.getLogger(__name__)

ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin",
    'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin",
    'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-pytorch_model.bin",
}

ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-config.json",
    'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-config.json",
    'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-config.json",
}


class RobertaEmbeddings(BertEmbeddings):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """
    def __init__(self, config):
        super(RobertaEmbeddings, self).__init__(config)
        self.padding_idx = 1

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        seq_length = input_ids.size(1)
        if position_ids is None:
            # Position numbers begin at padding_idx+1. Padding symbols are ignored.
            # cf. fairseq's `utils.make_positions`
            position_ids = torch.arange(self.padding_idx+1, seq_length+self.padding_idx+1, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
Julien Chaumond's avatar
Julien Chaumond committed
64
        return super(RobertaEmbeddings, self).forward(input_ids, token_type_ids=token_type_ids, position_ids=position_ids)
65
66
67
68
69


class RobertaConfig(BertConfig):
    pretrained_config_archive_map = ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP

LysandreJik's avatar
Doc  
LysandreJik committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

ROBERTA_START_DOCSTRING = r"""    The RoBERTa model was proposed in
    `RoBERTa: A Robustly Optimized BERT Pretraining Approach`_
    by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
    Veselin Stoyanov. It is based on Google's BERT model released in 2018.
    
    It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining
    objective and training with much larger mini-batches and learning rates.
    
    This implementation is the same as BertModel with a tiny embeddings tweak as well as a setup for Roberta pretrained 
    models.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`RoBERTa: A Robustly Optimized BERT Pretraining Approach`:
        https://arxiv.org/abs/1907.11692

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
        config (:class:`~pytorch_transformers.RobertaConfig`): Model configuration class with all the parameters of the 
93
94
            model. Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
LysandreJik's avatar
Doc  
LysandreJik committed
95
96
97
98
99
100
"""

ROBERTA_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
LysandreJik's avatar
LysandreJik committed
101
            To match pre-training, RoBERTa input sequence should be formatted with <s> and </s> tokens as follows:
LysandreJik's avatar
Doc  
LysandreJik committed
102
103
104

            (a) For sequence pairs:

LysandreJik's avatar
LysandreJik committed
105
                ``tokens:         <s> Is this Jacksonville ? </s> </s> No it is not . </s>``
LysandreJik's avatar
Doc  
LysandreJik committed
106
107
108

            (b) For single sequences:

LysandreJik's avatar
LysandreJik committed
109
                ``tokens:         <s> the dog is hairy . </s>``
LysandreJik's avatar
Doc  
LysandreJik committed
110
111
112

            Fully encoded sequences or sequence pairs can be obtained using the RobertaTokenizer.encode function with 
            the ``add_special_tokens`` parameter set to ``True``.
thomwolf's avatar
thomwolf committed
113
114
115
116

            RoBERTa is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

LysandreJik's avatar
Doc  
LysandreJik committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1[``.
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare RoBERTa Model transformer outputing raw hidden-states without any specific head on top.",
                      ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
134
class RobertaModel(BertModel):
LysandreJik's avatar
Doc  
LysandreJik committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaModel.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

162
163
164
165
166
167
168
169
170
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaModel, self).__init__(config)

        self.embeddings = RobertaEmbeddings(config)
171
        self.apply(self.init_weights)
172

173
174
175
176
177
178
179
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, position_ids=None, head_mask=None):
        if input_ids[:, 0].sum().item() != 0:
            logger.warning("A sequence with no special tokens has been passed to the RoBERTa model. "
                           "This model requires special tokens in order to work. "
                           "Please specify add_special_tokens=True in your encoding.")
        return super(RobertaModel, self).forward(input_ids, token_type_ids, attention_mask, position_ids, head_mask)

180

LysandreJik's avatar
Doc  
LysandreJik committed
181
182
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
183
class RobertaForMaskedLM(BertPreTrainedModel):
LysandreJik's avatar
Doc  
LysandreJik committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    r"""
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaForMaskedLM.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]

212
213
214
215
216
217
218
219
220
221
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaForMaskedLM, self).__init__(config)

        self.roberta = RobertaModel(config)
        self.lm_head = RobertaLMHead(config)
222
223
224
225
226
227
228
229
230
231
232
233

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.lm_head.decoder, self.roberta.embeddings.word_embeddings)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, position_ids=None,
                head_mask=None):
234
235
236
237
238
        outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

LysandreJik's avatar
Doc  
LysandreJik committed
239
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
240

241
242
243
244
245
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            outputs = (masked_lm_loss,) + outputs

LysandreJik's avatar
Doc  
LysandreJik committed
246
        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
247
248
249
250
251


class RobertaLMHead(nn.Module):
    """Roberta Head for masked language modeling."""

Julien Chaumond's avatar
Julien Chaumond committed
252
253
    def __init__(self, config):
        super(RobertaLMHead, self).__init__()
254
255
256
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)

257
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
258
259
260
261
262
263
264
265
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
266
        x = self.decoder(x) + self.bias
267
268

        return x
269
270


LysandreJik's avatar
Doc  
LysandreJik committed
271
272
273
@add_start_docstrings("""RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer 
    on top of the pooled output) e.g. for GLUE tasks. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
274
class RobertaForSequenceClassification(BertPreTrainedModel):
LysandreJik's avatar
Doc  
LysandreJik committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

erenup's avatar
erenup committed
297
        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
LysandreJik's avatar
Doc  
LysandreJik committed
298
299
300
301
302
303
        model = RobertaForSequenceClassification.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaForSequenceClassification, self).__init__(config)
        self.num_labels = config.num_labels

        self.roberta = RobertaModel(config)
        self.classifier = RobertaClassificationHead(config)
    
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
                position_ids=None, head_mask=None):
        outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)

erenup's avatar
erenup committed
336
337
338
@add_start_docstrings("""Roberta Model with a multiple choice classification head on top (a linear layer on top of
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
339
class RobertaForMultipleChoice(BertPreTrainedModel):
erenup's avatar
erenup committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            To match pre-training, RoBerta input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP] [SEP] no it is not . [SEP]``

                ``token_type_ids:   0   0  0    0    0     0       0   0   0     1  1  1  1   1   1``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``

                ``token_type_ids:   0   0   0   0  0     0   0``

            Indices can be obtained using :class:`pytorch_transformers.BertTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Segment token indices to indicate first and second portions of the inputs.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification loss.
        **classification_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above).
            Classification scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaForMultipleChoice.from_pretrained('roberta-base')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
        input_ids = torch.tensor([tokenizer.encode(s, add_special_tokens=True) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, classification_scores = outputs[:2]

    """
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaForMultipleChoice, self).__init__(config)

        self.roberta = RobertaModel(config)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)

        self.apply(self.init_weights)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
                position_ids=None, head_mask=None):
        num_choices = input_ids.shape[1]

        flat_input_ids = input_ids.view(-1, input_ids.size(-1))
        flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
        flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        outputs = self.roberta(flat_input_ids, position_ids=flat_position_ids, token_type_ids=flat_token_type_ids,
                            attention_mask=flat_attention_mask, head_mask=head_mask)
        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
        reshaped_logits = logits.view(-1, num_choices)

        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here

        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
            outputs = (loss,) + outputs

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)


444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461

class RobertaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super(RobertaClassificationHead, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x