modeling_roberta.py 17.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RoBERTa model. """

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import logging

import torch
import torch.nn as nn
import torch.nn.functional as F
26
from torch.nn import CrossEntropyLoss, MSELoss
27
28
29
30
31

from pytorch_transformers.modeling_bert import (BertConfig, BertEmbeddings,
                                                BertLayerNorm, BertModel,
                                                BertPreTrainedModel, gelu)

LysandreJik's avatar
Doc  
LysandreJik committed
32
33
from pytorch_transformers.modeling_utils import add_start_docstrings

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
logger = logging.getLogger(__name__)

ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP = {
    'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-pytorch_model.bin",
    'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-pytorch_model.bin",
    'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-pytorch_model.bin",
}

ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    'roberta-base': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-base-config.json",
    'roberta-large': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-config.json",
    'roberta-large-mnli': "https://s3.amazonaws.com/models.huggingface.co/bert/roberta-large-mnli-config.json",
}


class RobertaEmbeddings(BertEmbeddings):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """
    def __init__(self, config):
        super(RobertaEmbeddings, self).__init__(config)
        self.padding_idx = 1

    def forward(self, input_ids, token_type_ids=None, position_ids=None):
        seq_length = input_ids.size(1)
        if position_ids is None:
            # Position numbers begin at padding_idx+1. Padding symbols are ignored.
            # cf. fairseq's `utils.make_positions`
            position_ids = torch.arange(self.padding_idx+1, seq_length+self.padding_idx+1, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
Julien Chaumond's avatar
Julien Chaumond committed
64
        return super(RobertaEmbeddings, self).forward(input_ids, token_type_ids=token_type_ids, position_ids=position_ids)
65
66
67
68
69


class RobertaConfig(BertConfig):
    pretrained_config_archive_map = ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP

LysandreJik's avatar
Doc  
LysandreJik committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

ROBERTA_START_DOCSTRING = r"""    The RoBERTa model was proposed in
    `RoBERTa: A Robustly Optimized BERT Pretraining Approach`_
    by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer,
    Veselin Stoyanov. It is based on Google's BERT model released in 2018.
    
    It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining
    objective and training with much larger mini-batches and learning rates.
    
    This implementation is the same as BertModel with a tiny embeddings tweak as well as a setup for Roberta pretrained 
    models.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`RoBERTa: A Robustly Optimized BERT Pretraining Approach`:
        https://arxiv.org/abs/1907.11692

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
        config (:class:`~pytorch_transformers.RobertaConfig`): Model configuration class with all the parameters of the 
            model.
"""

ROBERTA_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            To match pre-training, RoBERTa input sequence should be formatted with [CLS] and [SEP] tokens as follows:

            (a) For sequence pairs:

                ``tokens:         [CLS] is this jack ##son ##ville ? [SEP][SEP] no it is not . [SEP]``

            (b) For single sequences:

                ``tokens:         [CLS] the dog is hairy . [SEP]``

            Fully encoded sequences or sequence pairs can be obtained using the RobertaTokenizer.encode function with 
            the ``add_special_tokens`` parameter set to ``True``.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1[``.
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare RoBERTa Model transformer outputing raw hidden-states without any specific head on top.",
                      ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
129
class RobertaModel(BertModel):
LysandreJik's avatar
Doc  
LysandreJik committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the output of the last layer of the model.
        **pooler_output**: ``torch.FloatTensor`` of shape ``(batch_size, hidden_size)``
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during Bert pretraining. This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaModel.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

157
158
159
160
161
162
163
164
165
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaModel, self).__init__(config)

        self.embeddings = RobertaEmbeddings(config)
166
        self.apply(self.init_weights)
167
168


LysandreJik's avatar
Doc  
LysandreJik committed
169
170
@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
171
class RobertaForMaskedLM(BertPreTrainedModel):
LysandreJik's avatar
Doc  
LysandreJik committed
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    r"""
        **masked_lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-1, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-1`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
        model = RobertaForMaskedLM.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, masked_lm_labels=input_ids)
        loss, prediction_scores = outputs[:2]

200
201
202
203
204
205
206
207
208
209
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaForMaskedLM, self).__init__(config)

        self.roberta = RobertaModel(config)
        self.lm_head = RobertaLMHead(config)
210
211
212
213
214
215
216
217
218
219
220
221

        self.apply(self.init_weights)
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.lm_head.decoder, self.roberta.embeddings.word_embeddings)

    def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, position_ids=None,
                head_mask=None):
222
223
224
225
226
        outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

LysandreJik's avatar
Doc  
LysandreJik committed
227
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
228

229
230
231
232
233
        if masked_lm_labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
            outputs = (masked_lm_loss,) + outputs

LysandreJik's avatar
Doc  
LysandreJik committed
234
        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
235
236
237
238
239


class RobertaLMHead(nn.Module):
    """Roberta Head for masked language modeling."""

Julien Chaumond's avatar
Julien Chaumond committed
240
241
    def __init__(self, config):
        super(RobertaLMHead, self).__init__()
242
243
244
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)

245
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
246
247
248
249
250
251
252
253
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
254
        x = self.decoder(x) + self.bias
255
256

        return x
257
258


LysandreJik's avatar
Doc  
LysandreJik committed
259
260
261
@add_start_docstrings("""RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer 
    on top of the pooled output) e.g. for GLUE tasks. """,
    ROBERTA_START_DOCSTRING, ROBERTA_INPUTS_DOCSTRING)
262
class RobertaForSequenceClassification(BertPreTrainedModel):
LysandreJik's avatar
Doc  
LysandreJik committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
            Indices should be in ``[0, ..., config.num_labels]``.
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = RoertaTokenizer.from_pretrained('roberta-base')
        model = RobertaForSequenceClassification.from_pretrained('roberta-base')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
    """
    config_class = RobertaConfig
    pretrained_model_archive_map = ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP
    base_model_prefix = "roberta"

    def __init__(self, config):
        super(RobertaForSequenceClassification, self).__init__(config)
        self.num_labels = config.num_labels

        self.roberta = RobertaModel(config)
        self.classifier = RobertaClassificationHead(config)
    
    def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,
                position_ids=None, head_mask=None):
        outputs = self.roberta(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                            attention_mask=attention_mask, head_mask=head_mask)
        sequence_output = outputs[0]
        logits = self.classifier(sequence_output)

        outputs = (logits,) + outputs[2:]
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), logits, (hidden_states), (attentions)



class RobertaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super(RobertaClassificationHead, self).__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x