modeling_xlnet_test.py 9.79 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import unittest
import json
import random
import shutil
import pytest

import torch

from pytorch_pretrained_bert import (XLNetConfig, XLNetRunConfig, XLNetModel, XLNetLMHeadModel)
from pytorch_pretrained_bert.modeling_xlnet import PRETRAINED_MODEL_ARCHIVE_MAP

class XLNetModelTest(unittest.TestCase):
    class XLNetModelTester(object):

        def __init__(self,
                     parent,
                     batch_size=13,
                     seq_length=7,
                     mem_len=30,
                     clamp_len=15,
                     reuse_len=15,
                     is_training=True,
                     use_labels=True,
                     vocab_size=99,
                     cutoffs=[10, 50, 80],
                     d_model=32,
                     n_head=4,
                     d_inner=128,
                     n_layer=5,
                     max_position_embeddings=10,
                     untie_r=True,
                     bi_data=False,
                     same_length=False,
                     seed=1,
                     type_vocab_size=2):
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.mem_len = mem_len
            self.clamp_len = clamp_len
            self.reuse_len = reuse_len
            self.is_training = is_training
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.cutoffs = cutoffs
            self.d_model = d_model
            self.n_head = n_head
            self.d_inner = d_inner
            self.n_layer = n_layer
            self.max_position_embeddings = max_position_embeddings
            self.bi_data = bi_data
            self.untie_r = untie_r
            self.same_length = same_length
            self.seed = seed
            self.type_vocab_size = type_vocab_size

        def prepare_config_and_inputs(self):
            input_ids_1 = XLNetModelTest.ids_tensor([self.seq_length, self.batch_size], self.vocab_size)
            input_ids_2 = XLNetModelTest.ids_tensor([self.seq_length, self.batch_size], self.vocab_size)
            segment_ids = XLNetModelTest.ids_tensor([self.seq_length, self.batch_size], self.type_vocab_size)

            lm_labels = None
            if self.use_labels:
                lm_labels = XLNetModelTest.ids_tensor([self.seq_length, self.batch_size], self.vocab_size)

            config = XLNetConfig(
                vocab_size_or_config_json_file=self.vocab_size,
                d_model=self.d_model,
                n_head=self.n_head,
                d_inner=self.d_inner,
                n_layer=self.n_layer,
                untie_r=self.untie_r,
                max_position_embeddings=self.max_position_embeddings)

            run_config = XLNetRunConfig(
                mem_len=self.mem_len,
                clamp_len=self.clamp_len,
                same_length=self.same_length,
                reuse_len=self.reuse_len,
                bi_data=self.bi_data)

            config.update(run_config)

            return (config, input_ids_1, input_ids_2, segment_ids, lm_labels)

        def set_seed(self):
            random.seed(self.seed)
            torch.manual_seed(self.seed)

        def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, segment_ids, lm_labels):
            model = XLNetLMHeadModel(config)
            model.eval()

            hidden_states_1, mems_1 = model(input_ids_1, seg_id=segment_ids)
            hidden_states_2, mems_2 = model(input_ids_2, seg_id=segment_ids, mems=mems_1)
            outputs = {
                "hidden_states_1": hidden_states_1,
                "mems_1": mems_1,
                "hidden_states_2": hidden_states_2,
                "mems_2": mems_2,
            }
            return outputs

        def check_transfo_xl_model_output(self, result):
            self.parent.assertListEqual(
                list(result["hidden_states_1"].size()),
                [self.seq_length, self.batch_size, self.d_model])
            self.parent.assertListEqual(
                list(result["hidden_states_2"].size()),
                [self.seq_length, self.batch_size, self.d_model])
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)


        def create_transfo_xl_lm_head(self, config, input_ids_1, input_ids_2, segment_ids, lm_labels):
            model = XLNetLMHeadModel(config)
            model.eval()

            loss_1, mems_1a = model(input_ids_1, target=lm_labels)
            lm_logits_1, mems_1b = model(input_ids_1)

            loss_2, mems_2a = model(input_ids_2, target=lm_labels, mems=mems_1a)
            lm_logits_2, mems_2b = model(input_ids_2, mems=mems_1b)

            outputs = {
                "loss_1": loss_1,
                "mems_1a": mems_1a,
                "lm_logits_1": lm_logits_1,
                "mems_1b": mems_1b,
                "loss_2": loss_2,
                "mems_2a": mems_2a,
                "lm_logits_2": lm_logits_2,
                "mems_2b": mems_2b,
            }
            return outputs

        def check_transfo_xl_lm_head_output(self, result):
            self.parent.assertListEqual(
                list(result["loss_1"].size()),
                [self.seq_length, self.batch_size])
            self.parent.assertListEqual(
                list(result["lm_logits_1"].size()),
                [self.seq_length, self.batch_size, self.vocab_size])
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1a"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_1b"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1a"]),
                list(mem[~torch.isnan(mem)].sum() for mem in result["mems_1b"]))

            self.parent.assertListEqual(
                list(result["loss_2"].size()),
                [self.seq_length, self.batch_size])
            self.parent.assertListEqual(
                list(result["lm_logits_2"].size()),
                [self.seq_length, self.batch_size, self.vocab_size])
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2a"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(list(mem.size()) for mem in result["mems_2b"]),
                [[self.mem_len, self.batch_size, self.d_model]] * self.n_layer)
            self.parent.assertListEqual(
                list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2a"]),
                list(mem[~torch.isnan(mem)].sum() for mem in result["mems_2b"]))

    def test_default(self):
        self.run_tester(XLNetModelTest.XLNetModelTester(self))

    def test_config_to_json_string(self):
        config = XLNetConfig(vocab_size_or_config_json_file=96, d_model=37)
        obj = json.loads(config.to_json_string())
        self.assertEqual(obj["n_token"], 96)
        self.assertEqual(obj["d_model"], 37)

    def test_config_to_json_file(self):
        config_first = XLNetConfig(vocab_size_or_config_json_file=96, d_model=37)
        json_file_path = "/tmp/config.json"
        config_first.to_json_file(json_file_path)
        config_second = XLNetConfig.from_json_file(json_file_path)
        os.remove(json_file_path)
        self.assertEqual(config_second.to_dict(), config_first.to_dict())

    @pytest.mark.slow
    def test_model_from_pretrained(self):
        cache_dir = "/tmp/pytorch_pretrained_bert_test/"
        for model_name in list(PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            model = XLNetModel.from_pretrained(model_name, cache_dir=cache_dir)
            shutil.rmtree(cache_dir)
            self.assertIsNotNone(model)

    def run_tester(self, tester):
        config_and_inputs = tester.prepare_config_and_inputs()

        tester.set_seed()
        output_result = tester.create_transfo_xl_model(*config_and_inputs)
        tester.check_transfo_xl_model_output(output_result)

        tester.set_seed()
        output_result = tester.create_transfo_xl_lm_head(*config_and_inputs)
        tester.check_transfo_xl_lm_head_output(output_result)

    @classmethod
    def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
        """Creates a random int32 tensor of the shape within the vocab size."""
        if rng is None:
            rng = random.Random()

        total_dims = 1
        for dim in shape:
            total_dims *= dim

        values = []
        for _ in range(total_dims):
            values.append(rng.randint(0, vocab_size - 1))

        return torch.tensor(data=values, dtype=torch.long).view(shape).contiguous()


if __name__ == "__main__":
    unittest.main()