run_squad.py 42.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Run BERT on SQuAD."""

thomwolf's avatar
thomwolf committed
18
from __future__ import absolute_import, division, print_function
thomwolf's avatar
thomwolf committed
19

20
import argparse
thomwolf's avatar
thomwolf committed
21
22
import collections
import json
thomwolf's avatar
thomwolf committed
23
import logging
thomwolf's avatar
thomwolf committed
24
25
import math
import os
26
import random
thomwolf's avatar
thomwolf committed
27
28
import sys
from io import open
thomwolf's avatar
thomwolf committed
29

thomwolf's avatar
thomwolf committed
30
import numpy as np
31
import torch
thomwolf's avatar
thomwolf committed
32
33
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
34
from torch.utils.data.distributed import DistributedSampler
thomwolf's avatar
thomwolf committed
35
from tqdm import tqdm, trange
thomwolf's avatar
thomwolf committed
36

thomwolf's avatar
thomwolf committed
37
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
thomwolf's avatar
thomwolf committed
38
39
from pytorch_pretrained_bert.modeling import BertForQuestionAnswering
from pytorch_pretrained_bert.optimization import BertAdam
thomwolf's avatar
thomwolf committed
40
41
42
43
44
45
46
47
from pytorch_pretrained_bert.tokenization import (BasicTokenizer,
                                                  BertTokenizer,
                                                  whitespace_tokenize)

if sys.version_info[0] == 2:
    import cPickle as pickle
else:
    import pickle
thomwolf's avatar
thomwolf committed
48

49
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
50
51
52
                    datefmt = '%m/%d/%Y %H:%M:%S',
                    level = logging.INFO)
logger = logging.getLogger(__name__)
thomwolf's avatar
thomwolf committed
53
54
55


class SquadExample(object):
56
    """A single training/test example for the Squad dataset."""
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

    def __init__(self,
                 qas_id,
                 question_text,
                 doc_tokens,
                 orig_answer_text=None,
                 start_position=None,
                 end_position=None):
        self.qas_id = qas_id
        self.question_text = question_text
        self.doc_tokens = doc_tokens
        self.orig_answer_text = orig_answer_text
        self.start_position = start_position
        self.end_position = end_position

    def __str__(self):
        return self.__repr__()

    def __repr__(self):
        s = ""
77
        s += "qas_id: %s" % (self.qas_id)
78
        s += ", question_text: %s" % (
79
            self.question_text)
80
81
82
83
84
85
        s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
        if self.start_position:
            s += ", start_position: %d" % (self.start_position)
        if self.start_position:
            s += ", end_position: %d" % (self.end_position)
        return s
thomwolf's avatar
thomwolf committed
86
87
88


class InputFeatures(object):
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    """A single set of features of data."""

    def __init__(self,
                 unique_id,
                 example_index,
                 doc_span_index,
                 tokens,
                 token_to_orig_map,
                 token_is_max_context,
                 input_ids,
                 input_mask,
                 segment_ids,
                 start_position=None,
                 end_position=None):
        self.unique_id = unique_id
        self.example_index = example_index
        self.doc_span_index = doc_span_index
        self.tokens = tokens
        self.token_to_orig_map = token_to_orig_map
        self.token_is_max_context = token_is_max_context
        self.input_ids = input_ids
        self.input_mask = input_mask
        self.segment_ids = segment_ids
        self.start_position = start_position
        self.end_position = end_position
thomwolf's avatar
thomwolf committed
114
115
116


def read_squad_examples(input_file, is_training):
117
    """Read a SQuAD json file into a list of SquadExample."""
118
    with open(input_file, "r", encoding='utf-8') as reader:
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
        input_data = json.load(reader)["data"]

    def is_whitespace(c):
        if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F:
            return True
        return False

    examples = []
    for entry in input_data:
        for paragraph in entry["paragraphs"]:
            paragraph_text = paragraph["context"]
            doc_tokens = []
            char_to_word_offset = []
            prev_is_whitespace = True
            for c in paragraph_text:
                if is_whitespace(c):
                    prev_is_whitespace = True
                else:
                    if prev_is_whitespace:
                        doc_tokens.append(c)
                    else:
                        doc_tokens[-1] += c
                    prev_is_whitespace = False
                char_to_word_offset.append(len(doc_tokens) - 1)

            for qa in paragraph["qas"]:
                qas_id = qa["id"]
                question_text = qa["question"]
                start_position = None
                end_position = None
                orig_answer_text = None
                if is_training:
                    if len(qa["answers"]) != 1:
                        raise ValueError(
                            "For training, each question should have exactly 1 answer.")
                    answer = qa["answers"][0]
                    orig_answer_text = answer["text"]
                    answer_offset = answer["answer_start"]
                    answer_length = len(orig_answer_text)
                    start_position = char_to_word_offset[answer_offset]
                    end_position = char_to_word_offset[answer_offset + answer_length - 1]
                    # Only add answers where the text can be exactly recovered from the
                    # document. If this CAN'T happen it's likely due to weird Unicode
                    # stuff so we will just skip the example.
                    #
                    # Note that this means for training mode, every example is NOT
                    # guaranteed to be preserved.
                    actual_text = " ".join(doc_tokens[start_position:(end_position + 1)])
                    cleaned_answer_text = " ".join(
thomwolf's avatar
thomwolf committed
168
                        whitespace_tokenize(orig_answer_text))
169
                    if actual_text.find(cleaned_answer_text) == -1:
170
                        logger.warning("Could not find answer: '%s' vs. '%s'",
171
172
173
174
175
176
177
178
179
180
181
182
                                           actual_text, cleaned_answer_text)
                        continue

                example = SquadExample(
                    qas_id=qas_id,
                    question_text=question_text,
                    doc_tokens=doc_tokens,
                    orig_answer_text=orig_answer_text,
                    start_position=start_position,
                    end_position=end_position)
                examples.append(example)
    return examples
thomwolf's avatar
thomwolf committed
183
184
185
186


def convert_examples_to_features(examples, tokenizer, max_seq_length,
                                 doc_stride, max_query_length, is_training):
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    """Loads a data file into a list of `InputBatch`s."""

    unique_id = 1000000000

    features = []
    for (example_index, example) in enumerate(examples):
        query_tokens = tokenizer.tokenize(example.question_text)

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        tok_to_orig_index = []
        orig_to_tok_index = []
        all_doc_tokens = []
        for (i, token) in enumerate(example.doc_tokens):
            orig_to_tok_index.append(len(all_doc_tokens))
            sub_tokens = tokenizer.tokenize(token)
            for sub_token in sub_tokens:
                tok_to_orig_index.append(i)
                all_doc_tokens.append(sub_token)

        tok_start_position = None
        tok_end_position = None
thomwolf's avatar
thomwolf committed
210
        if is_training:
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            tok_start_position = orig_to_tok_index[example.start_position]
            if example.end_position < len(example.doc_tokens) - 1:
                tok_end_position = orig_to_tok_index[example.end_position + 1] - 1
            else:
                tok_end_position = len(all_doc_tokens) - 1
            (tok_start_position, tok_end_position) = _improve_answer_span(
                all_doc_tokens, tok_start_position, tok_end_position, tokenizer,
                example.orig_answer_text)

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_to_orig_map = {}
            token_is_max_context = {}
            segment_ids = []
            tokens.append("[CLS]")
            segment_ids.append(0)
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(0)
            tokens.append("[SEP]")
            segment_ids.append(0)

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i
                token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index]

                is_max_context = _check_is_max_context(doc_spans, doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(1)
            tokens.append("[SEP]")
            segment_ids.append(1)

            input_ids = tokenizer.convert_tokens_to_ids(tokens)

            # The mask has 1 for real tokens and 0 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [1] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(0)
                segment_ids.append(0)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length

            start_position = None
            end_position = None
            if is_training:
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
                if (example.start_position < doc_start or
                        example.end_position < doc_start or
                        example.start_position > doc_end or example.end_position > doc_end):
                    continue

                doc_offset = len(query_tokens) + 2
                start_position = tok_start_position - doc_start + doc_offset
                end_position = tok_end_position - doc_start + doc_offset

            if example_index < 20:
297
298
299
300
                logger.info("*** Example ***")
                logger.info("unique_id: %s" % (unique_id))
                logger.info("example_index: %s" % (example_index))
                logger.info("doc_span_index: %s" % (doc_span_index))
301
                logger.info("tokens: %s" % " ".join(tokens))
thomwolf's avatar
thomwolf committed
302
303
                logger.info("token_to_orig_map: %s" % " ".join([
                    "%d:%d" % (x, y) for (x, y) in token_to_orig_map.items()]))
304
                logger.info("token_is_max_context: %s" % " ".join([
thomwolf's avatar
thomwolf committed
305
                    "%d:%s" % (x, y) for (x, y) in token_is_max_context.items()
306
                ]))
307
308
                logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
                logger.info(
309
                    "input_mask: %s" % " ".join([str(x) for x in input_mask]))
310
                logger.info(
311
312
313
                    "segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
                if is_training:
                    answer_text = " ".join(tokens[start_position:(end_position + 1)])
314
315
316
                    logger.info("start_position: %d" % (start_position))
                    logger.info("end_position: %d" % (end_position))
                    logger.info(
317
                        "answer: %s" % (answer_text))
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

            features.append(
                InputFeatures(
                    unique_id=unique_id,
                    example_index=example_index,
                    doc_span_index=doc_span_index,
                    tokens=tokens,
                    token_to_orig_map=token_to_orig_map,
                    token_is_max_context=token_is_max_context,
                    input_ids=input_ids,
                    input_mask=input_mask,
                    segment_ids=segment_ids,
                    start_position=start_position,
                    end_position=end_position))
            unique_id += 1

    return features
thomwolf's avatar
thomwolf committed
335
336
337
338


def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer,
                         orig_answer_text):
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
    """Returns tokenized answer spans that better match the annotated answer."""

    # The SQuAD annotations are character based. We first project them to
    # whitespace-tokenized words. But then after WordPiece tokenization, we can
    # often find a "better match". For example:
    #
    #   Question: What year was John Smith born?
    #   Context: The leader was John Smith (1895-1943).
    #   Answer: 1895
    #
    # The original whitespace-tokenized answer will be "(1895-1943).". However
    # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match
    # the exact answer, 1895.
    #
    # However, this is not always possible. Consider the following:
    #
    #   Question: What country is the top exporter of electornics?
    #   Context: The Japanese electronics industry is the lagest in the world.
    #   Answer: Japan
    #
    # In this case, the annotator chose "Japan" as a character sub-span of
    # the word "Japanese". Since our WordPiece tokenizer does not split
    # "Japanese", we just use "Japanese" as the annotation. This is fairly rare
    # in SQuAD, but does happen.
    tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))

    for new_start in range(input_start, input_end + 1):
        for new_end in range(input_end, new_start - 1, -1):
            text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
            if text_span == tok_answer_text:
                return (new_start, new_end)

    return (input_start, input_end)
thomwolf's avatar
thomwolf committed
372
373
374


def _check_is_max_context(doc_spans, cur_span_index, position):
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    """Check if this is the 'max context' doc span for the token."""

    # Because of the sliding window approach taken to scoring documents, a single
    # token can appear in multiple documents. E.g.
    #  Doc: the man went to the store and bought a gallon of milk
    #  Span A: the man went to the
    #  Span B: to the store and bought
    #  Span C: and bought a gallon of
    #  ...
    #
    # Now the word 'bought' will have two scores from spans B and C. We only
    # want to consider the score with "maximum context", which we define as
    # the *minimum* of its left and right context (the *sum* of left and
    # right context will always be the same, of course).
    #
    # In the example the maximum context for 'bought' would be span C since
    # it has 1 left context and 3 right context, while span B has 4 left context
    # and 0 right context.
    best_score = None
    best_span_index = None
    for (span_index, doc_span) in enumerate(doc_spans):
        end = doc_span.start + doc_span.length - 1
        if position < doc_span.start:
            continue
        if position > end:
            continue
        num_left_context = position - doc_span.start
        num_right_context = end - position
        score = min(num_left_context, num_right_context) + 0.01 * doc_span.length
        if best_score is None or score > best_score:
            best_score = score
            best_span_index = span_index

    return cur_span_index == best_span_index
thomwolf's avatar
thomwolf committed
409
410
411
412
413
414
415
416
417



RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
418
                      output_nbest_file, verbose_logging):
419
    """Write final predictions to the json file."""
420
421
    logger.info("Writing predictions to: %s" % (output_prediction_file))
    logger.info("Writing nbest to: %s" % (output_nbest_file))
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction",
        ["feature_index", "start_index", "end_index", "start_logit", "end_logit"])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]

            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))

        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]

            tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)]
            orig_doc_start = feature.token_to_orig_map[pred.start_index]
            orig_doc_end = feature.token_to_orig_map[pred.end_index]
            orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)]
            tok_text = " ".join(tok_tokens)

            # De-tokenize WordPieces that have been split off.
            tok_text = tok_text.replace(" ##", "")
            tok_text = tok_text.replace("##", "")

            # Clean whitespace
            tok_text = tok_text.strip()
            tok_text = " ".join(tok_text.split())
            orig_text = " ".join(orig_tokens)

thomwolf's avatar
thomwolf committed
504
            final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging)
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
            if final_text in seen_predictions:
                continue

            seen_predictions[final_text] = True
            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))

        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

        all_predictions[example.qas_id] = nbest_json[0]["text"]
        all_nbest_json[example.qas_id] = nbest_json

543
    with open(output_prediction_file, "w") as writer:
544
545
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

546
    with open(output_nbest_file, "w") as writer:
547
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
thomwolf's avatar
thomwolf committed
548
549


thomwolf's avatar
thomwolf committed
550
def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False):
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the SQuAD eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
thomwolf's avatar
thomwolf committed
593
    tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
594
595
596
597
598

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
thomwolf's avatar
thomwolf committed
599
        if verbose_logging:
600
            logger.info(
601
602
603
604
605
606
607
608
                "Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
thomwolf's avatar
thomwolf committed
609
        if verbose_logging:
610
            logger.info("Length not equal after stripping spaces: '%s' vs '%s'",
611
612
613
614
615
616
                            orig_ns_text, tok_ns_text)
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
thomwolf's avatar
thomwolf committed
617
    for (i, tok_index) in tok_ns_to_s_map.items():
618
619
620
621
622
623
624
625
626
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
thomwolf's avatar
thomwolf committed
627
        if verbose_logging:
628
            logger.info("Couldn't map start position")
629
630
631
632
633
634
635
636
637
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
thomwolf's avatar
thomwolf committed
638
        if verbose_logging:
639
            logger.info("Couldn't map end position")
640
641
642
643
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text
thomwolf's avatar
thomwolf committed
644
645
646


def _get_best_indexes(logits, n_best_size):
647
648
    """Get the n-best logits from a list."""
    index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True)
thomwolf's avatar
thomwolf committed
649

650
651
652
653
654
655
    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes
thomwolf's avatar
thomwolf committed
656
657
658


def _compute_softmax(scores):
659
660
661
    """Compute softmax probability over raw logits."""
    if not scores:
        return []
thomwolf's avatar
thomwolf committed
662

663
664
665
666
    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score
thomwolf's avatar
thomwolf committed
667

668
669
670
671
672
673
    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x
thomwolf's avatar
thomwolf committed
674

675
676
677
678
    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs
thomwolf's avatar
thomwolf committed
679

680
681
682
683
def warmup_linear(x, warmup=0.002):
    if x < warmup:
        return x/warmup
    return 1.0 - x
thomwolf's avatar
thomwolf committed
684

685
686
687
688
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
thomwolf's avatar
thomwolf committed
689
690
    parser.add_argument("--bert_model", default=None, type=str, required=True,
                        help="Bert pre-trained model selected in the list: bert-base-uncased, "
691
692
                        "bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
                        "bert-base-multilingual-cased, bert-base-chinese.")
693
    parser.add_argument("--output_dir", default=None, type=str, required=True,
694
                        help="The output directory where the model checkpoints and predictions will be written.")
695
696
697
698
699
700
701
702
703
704
705
706
707

    ## Other parameters
    parser.add_argument("--train_file", default=None, type=str, help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument("--predict_file", default=None, type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json")
    parser.add_argument("--max_seq_length", default=384, type=int,
                        help="The maximum total input sequence length after WordPiece tokenization. Sequences "
                             "longer than this will be truncated, and sequences shorter than this will be padded.")
    parser.add_argument("--doc_stride", default=128, type=int,
                        help="When splitting up a long document into chunks, how much stride to take between chunks.")
    parser.add_argument("--max_query_length", default=64, type=int,
                        help="The maximum number of tokens for the question. Questions longer than this will "
                             "be truncated to this length.")
708
709
    parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
    parser.add_argument("--do_predict", action='store_true', help="Whether to run eval on the dev set.")
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.")
    parser.add_argument("--predict_batch_size", default=8, type=int, help="Total batch size for predictions.")
    parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
                             "of training.")
    parser.add_argument("--n_best_size", default=20, type=int,
                        help="The total number of n-best predictions to generate in the nbest_predictions.json "
                             "output file.")
    parser.add_argument("--max_answer_length", default=30, type=int,
                        help="The maximum length of an answer that can be generated. This is needed because the start "
                             "and end predictions are not conditioned on one another.")
724
    parser.add_argument("--verbose_logging", action='store_true',
725
726
727
728
729
                        help="If true, all of the warnings related to data processing will be printed. "
                             "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
730
731
    parser.add_argument('--seed',
                        type=int,
thomwolf's avatar
thomwolf committed
732
733
                        default=42,
                        help="random seed for initialization")
734
735
736
    parser.add_argument('--gradient_accumulation_steps',
                        type=int,
                        default=1,
737
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
738
739
740
    parser.add_argument("--do_lower_case",
                        action='store_true',
                        help="Whether to lower case the input text. True for uncased models, False for cased models.")
741
742
743
744
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
745
746
747
    parser.add_argument('--fp16',
                        action='store_true',
                        help="Whether to use 16-bit float precision instead of 32-bit")
thomwolf's avatar
thomwolf committed
748
    parser.add_argument('--loss_scale',
749
750
751
752
                        type=float, default=0,
                        help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                             "0 (default value): dynamic loss scaling.\n"
                             "Positive power of 2: static loss scaling value.\n")
753

754
755
756
757
758
759
    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
760
        torch.cuda.set_device(args.local_rank)
761
762
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
thomwolf's avatar
thomwolf committed
763
764
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
765
    logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
thomwolf's avatar
thomwolf committed
766
        device, n_gpu, bool(args.local_rank != -1), args.fp16))
thomwolf's avatar
thomwolf committed
767

768
769
770
    if args.gradient_accumulation_steps < 1:
        raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
                            args.gradient_accumulation_steps))
thomwolf's avatar
thomwolf committed
771

772
    args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps)
773
774
775
776

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
thomwolf's avatar
thomwolf committed
777
778
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)
779
780

    if not args.do_train and not args.do_predict:
781
782
        raise ValueError("At least one of `do_train` or `do_predict` must be True.")

783
784
    if args.do_train:
        if not args.train_file:
785
786
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
787
788
    if args.do_predict:
        if not args.predict_file:
789
790
791
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified.")

792
793
    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError("Output directory () already exists and is not empty.")
thomwolf's avatar
thomwolf committed
794
795
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir)
796

797
    tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
798
799
800

    train_examples = None
    num_train_steps = None
801
    if args.do_train:
802
        train_examples = read_squad_examples(
803
            input_file=args.train_file, is_training=True)
804
        num_train_steps = int(
805
            len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs)
806

thomwolf's avatar
thomwolf committed
807
    # Prepare model
808
    model = BertForQuestionAnswering.from_pretrained(args.bert_model,
thomwolf's avatar
thomwolf committed
809
                cache_dir=os.path.join(PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank)))
810

811
812
    if args.fp16:
        model.half()
813
814
    model.to(device)
    if args.local_rank != -1:
thomwolf's avatar
thomwolf committed
815
816
817
818
819
        try:
            from apex.parallel import DistributedDataParallel as DDP
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

820
        model = DDP(model)
821
822
823
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

thomwolf's avatar
thomwolf committed
824
    # Prepare optimizer
825
826
827
828
829
830
831
    param_optimizer = list(model.named_parameters())

    # hack to remove pooler, which is not used
    # thus it produce None grad that break apex
    param_optimizer = [n for n in param_optimizer if 'pooler' not in n[0]]

    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
thomwolf's avatar
thomwolf committed
832
    optimizer_grouped_parameters = [
833
834
        {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01},
        {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
thomwolf's avatar
thomwolf committed
835
        ]
836

837
838
839
    t_total = num_train_steps
    if args.local_rank != -1:
        t_total = t_total // torch.distributed.get_world_size()
840
    if args.fp16:
thomwolf's avatar
thomwolf committed
841
842
843
844
845
846
        try:
            from apex.optimizers import FP16_Optimizer
            from apex.optimizers import FusedAdam
        except ImportError:
            raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")

847
848
849
850
851
852
853
854
855
856
857
858
859
        optimizer = FusedAdam(optimizer_grouped_parameters,
                              lr=args.learning_rate,
                              bias_correction=False,
                              max_grad_norm=1.0)
        if args.loss_scale == 0:
            optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
        else:
            optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
    else:
        optimizer = BertAdam(optimizer_grouped_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=t_total)
thomwolf's avatar
thomwolf committed
860

861
862
    global_step = 0
    if args.do_train:
863
        cached_train_features_file = args.train_file+'_{0}_{1}_{2}_{3}'.format(
864
            list(filter(None, args.bert_model.split('/'))).pop(), str(args.max_seq_length), str(args.doc_stride), str(args.max_query_length))
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
        train_features = None
        try:
            with open(cached_train_features_file, "rb") as reader:
                train_features = pickle.load(reader)
        except:
            train_features = convert_examples_to_features(
                examples=train_examples,
                tokenizer=tokenizer,
                max_seq_length=args.max_seq_length,
                doc_stride=args.doc_stride,
                max_query_length=args.max_query_length,
                is_training=True)
            if args.local_rank == -1 or torch.distributed.get_rank() == 0:
                logger.info("  Saving train features into cached file %s", cached_train_features_file)
                with open(cached_train_features_file, "wb") as writer:
880
                    pickle.dump(train_features, writer)
881
882
883
884
885
886
887
888
889
890
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)
        all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long)
        all_start_positions = torch.tensor([f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor([f.end_position for f in train_features], dtype=torch.long)
thomwolf's avatar
thomwolf committed
891
892
        train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                                   all_start_positions, all_end_positions)
893
894
895
896
897
898
899
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size)

        model.train()
900
        for _ in trange(int(args.num_train_epochs), desc="Epoch"):
thomwolf's avatar
thomwolf committed
901
            for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
thomwolf's avatar
thomwolf committed
902
903
                if n_gpu == 1:
                    batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self
thomwolf's avatar
thomwolf committed
904
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
905
                loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions)
thomwolf's avatar
thomwolf committed
906
907
                if n_gpu > 1:
                    loss = loss.mean() # mean() to average on multi-gpu.
908
909
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
910
911
912
913
914

                if args.fp16:
                    optimizer.backward(loss)
                else:
                    loss.backward()
thomwolf's avatar
thomwolf committed
915
                if (step + 1) % args.gradient_accumulation_steps == 0:
916
917
918
919
920
921
                    # modify learning rate with special warm up BERT uses
                    lr_this_step = args.learning_rate * warmup_linear(global_step/t_total, args.warmup_proportion)
                    for param_group in optimizer.param_groups:
                        param_group['lr'] = lr_this_step
                    optimizer.step()
                    optimizer.zero_grad()
thomwolf's avatar
thomwolf committed
922
                    global_step += 1
923

924
925
926
927
928
929
930
931
    # Save a trained model
    model_to_save = model.module if hasattr(model, 'module') else model  # Only save the model it-self
    output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
    torch.save(model_to_save.state_dict(), output_model_file)

    # Load a trained model that you have fine-tuned
    model_state_dict = torch.load(output_model_file)
    model = BertForQuestionAnswering.from_pretrained(args.bert_model, state_dict=model_state_dict)
932
    model.to(device)
933

934
    if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
935
        eval_examples = read_squad_examples(
936
            input_file=args.predict_file, is_training=False)
937
938
939
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
940
941
942
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
943
944
            is_training=False)

945
946
947
948
949
950
951
952
953
954
        logger.info("***** Running predictions *****")
        logger.info("  Num orig examples = %d", len(eval_examples))
        logger.info("  Num split examples = %d", len(eval_features))
        logger.info("  Batch size = %d", args.predict_batch_size)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)
        eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index)
955
956
        # Run prediction for full data
        eval_sampler = SequentialSampler(eval_data)
957
        eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size)
958

959
        model.eval()
960
        all_results = []
thomwolf's avatar
thomwolf committed
961
        logger.info("Start evaluating")
962
        for input_ids, input_mask, segment_ids, example_indices in tqdm(eval_dataloader, desc="Evaluating"):
963
            if len(all_results) % 1000 == 0:
964
965
                logger.info("Processing example: %d" % (len(all_results)))
            input_ids = input_ids.to(device)
thomwolf's avatar
thomwolf committed
966
            input_mask = input_mask.to(device)
967
            segment_ids = segment_ids.to(device)
968
969
970
971
972
973
974
975
976
977
            with torch.no_grad():
                batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask)
            for i, example_index in enumerate(example_indices):
                start_logits = batch_start_logits[i].detach().cpu().tolist()
                end_logits = batch_end_logits[i].detach().cpu().tolist()
                eval_feature = eval_features[example_index.item()]
                unique_id = int(eval_feature.unique_id)
                all_results.append(RawResult(unique_id=unique_id,
                                             start_logits=start_logits,
                                             end_logits=end_logits))
978
979
        output_prediction_file = os.path.join(args.output_dir, "predictions.json")
        output_nbest_file = os.path.join(args.output_dir, "nbest_predictions.json")
980
        write_predictions(eval_examples, eval_features, all_results,
981
982
                          args.n_best_size, args.max_answer_length,
                          args.do_lower_case, output_prediction_file,
thomwolf's avatar
thomwolf committed
983
                          output_nbest_file, args.verbose_logging)
thomwolf's avatar
thomwolf committed
984
985
986


if __name__ == "__main__":
987
    main()