modeling_auto.py 40.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Auto Model class. """

from __future__ import absolute_import, division, print_function, unicode_literals

import logging

thomwolf's avatar
thomwolf committed
21
22
23
24
25
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss
from torch.nn.parameter import Parameter

26
27
28
29
30
31
32
from .modeling_bert import BertConfig, BertModel, BertForMaskedLM, BertForSequenceClassification, BertForQuestionAnswering
from .modeling_openai import OpenAIGPTConfig, OpenAIGPTModel, OpenAIGPTLMHeadModel
from .modeling_gpt2 import GPT2Config, GPT2Model, GPT2LMHeadModel
from .modeling_transfo_xl import TransfoXLConfig, TransfoXLModel, TransfoXLLMHeadModel
from .modeling_xlnet import XLNetConfig, XLNetModel, XLNetLMHeadModel, XLNetForSequenceClassification, XLNetForQuestionAnswering
from .modeling_xlm import XLMConfig, XLMModel, XLMWithLMHeadModel, XLMForSequenceClassification, XLMForQuestionAnswering
from .modeling_roberta import RobertaConfig, RobertaModel, RobertaForMaskedLM, RobertaForSequenceClassification
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
from .modeling_utils import PreTrainedModel, SequenceSummary, add_start_docstrings
thomwolf's avatar
thomwolf committed
35

thomwolf's avatar
thomwolf committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
logger = logging.getLogger(__name__)

class AutoConfig(object):
    r""":class:`~pytorch_transformers.AutoConfig` is a generic configuration class
        that will be instantiated as one of the configuration classes of the library
        when created with the `AutoConfig.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method take care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)
55
            - contains `roberta`: RobertaConfig (RoBERTa model)
thomwolf's avatar
thomwolf committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

        This class cannot be instantiated using `__init__()` (throw an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoConfig is designed to be instantiated "
            "using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
        r""" Instantiate a one of the configuration classes of the library
        from a pre-trained model configuration.

        The configuration class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertConfig (Bert model)
            - contains `openai-gpt`: OpenAIGPTConfig (OpenAI GPT model)
            - contains `gpt2`: GPT2Config (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLConfig (Transformer-XL model)
            - contains `xlnet`: XLNetConfig (XLNet model)
            - contains `xlm`: XLMConfig (XLM model)
76
            - contains `roberta`: RobertaConfig (RoBERTa model)
thomwolf's avatar
thomwolf committed
77
78

        Params:
thomwolf's avatar
thomwolf committed
79
80
81
82
83
84
85
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing a configuration file saved using the :func:`~pytorch_transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
                - a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
86
87
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

            kwargs: (`optional`) dict: key/value pairs with which to update the configuration object after loading.

                - The values in kwargs of any keys which are configuration attributes will be used to override the loaded values.
                - Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter.

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            return_unused_kwargs: (`optional`) bool:

thomwolf's avatar
thomwolf committed
103
                - If False, then this function returns just the final configuration object.
thomwolf's avatar
thomwolf committed
104
                - If True, then this functions returns a tuple `(config, unused_kwargs)` where `unused_kwargs` is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: ie the part of kwargs which has not been used to update `config` and is otherwise ignored.
thomwolf's avatar
thomwolf committed
105
106
107

        Examples::

thomwolf's avatar
thomwolf committed
108
109
110
111
112
113
114
115
116
            config = AutoConfig.from_pretrained('bert-base-uncased')    # Download configuration from S3 and cache.
            config = AutoConfig.from_pretrained('./test/bert_saved_model/')  # E.g. config (or model) was saved using `save_pretrained('./test/saved_model/')`
            config = AutoConfig.from_pretrained('./test/bert_saved_model/my_configuration.json')
            config = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True, foo=False)
            assert config.output_attention == True
            config, unused_kwargs = AutoConfig.from_pretrained('bert-base-uncased', output_attention=True,
                                                               foo=False, return_unused_kwargs=True)
            assert config.output_attention == True
            assert unused_kwargs == {'foo': False}
thomwolf's avatar
thomwolf committed
117
118

        """
119
120
121
        if 'roberta' in pretrained_model_name_or_path:
            return RobertaConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
thomwolf's avatar
thomwolf committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
            return BertConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2Config.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
136
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))
thomwolf's avatar
thomwolf committed
137
138
139
140
141
142
143
144
145


class AutoModel(object):
    r"""
        :class:`~pytorch_transformers.AutoModel` is a generic model class
        that will be instantiated as one of the base model classes of the library
        when created with the `AutoModel.from_pretrained(pretrained_model_name_or_path)`
        class method.

146
        The `from_pretrained()` method takes care of returning the correct model class instance
thomwolf's avatar
thomwolf committed
147
148
149
150
        using pattern matching on the `pretrained_model_name_or_path` string.

        The base model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
151
            - contains `roberta`: RobertaModel (RoBERTa model)
152
153
154
155
156
157
            - contains `bert`: BertModel (Bert model)
            - contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
            - contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
            - contains `xlnet`: XLNetModel (XLNet model)
            - contains `xlm`: XLMModel (XLM model)
thomwolf's avatar
thomwolf committed
158

159
        This class cannot be instantiated using `__init__()` (throws an error).
thomwolf's avatar
thomwolf committed
160
161
162
163
164
165
166
    """
    def __init__(self):
        raise EnvironmentError("AutoModel is designed to be instantiated "
            "using the `AutoModel.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
167
        r""" Instantiates one of the base model classes of the library
thomwolf's avatar
thomwolf committed
168
169
        from a pre-trained model configuration.

thomwolf's avatar
thomwolf committed
170
        The model class to instantiate is selected as the first pattern matching
thomwolf's avatar
thomwolf committed
171
        in the `pretrained_model_name_or_path` string (in the following order):
172
            - contains `roberta`: RobertaModel (RoBERTa model)
173
174
175
176
177
178
            - contains `bert`: BertModel (Bert model)
            - contains `openai-gpt`: OpenAIGPTModel (OpenAI GPT model)
            - contains `gpt2`: GPT2Model (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLModel (Transformer-XL model)
            - contains `xlnet`: XLNetModel (XLNet model)
            - contains `xlm`: XLMModel (XLM model)
thomwolf's avatar
thomwolf committed
179

thomwolf's avatar
typos  
thomwolf committed
180
            The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
thomwolf's avatar
thomwolf committed
181
182
183
            To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
thomwolf's avatar
typos  
thomwolf committed
202
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
203
204
205
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
thomwolf's avatar
thomwolf committed
206
207
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
thomwolf's avatar
thomwolf committed
224
225
226

        Examples::

thomwolf's avatar
thomwolf committed
227
228
229
230
231
232
233
            model = AutoModel.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModel.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModel.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModel.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)
thomwolf's avatar
thomwolf committed
234
235

        """
236
237
238
        if 'roberta' in pretrained_model_name_or_path:
            return RobertaModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
thomwolf's avatar
thomwolf committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
            return BertModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2Model.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
253
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304



class AutoModelWithLMHead(object):
    r"""
        :class:`~pytorch_transformers.AutoModelWithLMHead` is a generic model class
        that will be instantiated as one of the language modeling model classes of the library
        when created with the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `roberta`: RobertaForMaskedLM (RoBERTa model)
            - contains `bert`: BertForMaskedLM (Bert model)
            - contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model)
            - contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model)
            - contains `xlnet`: XLNetLMHeadModel (XLNet model)
            - contains `xlm`: XLMWithLMHeadModel (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the language modeling model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `roberta`: RobertaForMaskedLM (RoBERTa model)
            - contains `bert`: BertForMaskedLM (Bert model)
            - contains `openai-gpt`: OpenAIGPTLMHeadModel (OpenAI GPT model)
            - contains `gpt2`: GPT2LMHeadModel (OpenAI GPT-2 model)
            - contains `transfo-xl`: TransfoXLLMHeadModel (Transformer-XL model)
            - contains `xlnet`: XLNetLMHeadModel (XLNet model)
            - contains `xlm`: XLMWithLMHeadModel (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
323
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
324
325
326
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
327
328
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

        Examples::

            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelWithLMHead.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelWithLMHead.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelWithLMHead.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
        if 'roberta' in pretrained_model_name_or_path:
            return RobertaForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
            return BertForMaskedLM.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'openai-gpt' in pretrained_model_name_or_path:
            return OpenAIGPTLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'gpt2' in pretrained_model_name_or_path:
            return GPT2LMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'transfo-xl' in pretrained_model_name_or_path:
            return TransfoXLLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMWithLMHeadModel.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', "
                         "'xlm', 'roberta'".format(pretrained_model_name_or_path))


class AutoModelForSequenceClassification(object):
    r"""
        :class:`~pytorch_transformers.AutoModelForSequenceClassification` is a generic model class
        that will be instantiated as one of the sequence classification model classes of the library
        when created with the `AutoModelForSequenceClassification.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `roberta`: RobertaForSequenceClassification (RoBERTa model)
            - contains `bert`: BertForSequenceClassification (Bert model)
            - contains `xlnet`: XLNetForSequenceClassification (XLNet model)
            - contains `xlm`: XLMForSequenceClassification (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the sequence classification model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `roberta`: RobertaForSequenceClassification (RoBERTa model)
            - contains `bert`: BertForSequenceClassification (Bert model)
            - contains `xlnet`: XLNetForSequenceClassification (XLNet model)
            - contains `xlm`: XLMForSequenceClassification (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
437
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
438
439
440
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
441
442
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

        Examples::

            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForSequenceClassification.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForSequenceClassification.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
        if 'roberta' in pretrained_model_name_or_path:
            return RobertaForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'bert' in pretrained_model_name_or_path:
            return BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMForSequenceClassification.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'xlnet', 'xlm', 'roberta'".format(pretrained_model_name_or_path))


class AutoModelForQuestionAnswering(object):
    r"""
        :class:`~pytorch_transformers.AutoModelForQuestionAnswering` is a generic model class
        that will be instantiated as one of the question answering model classes of the library
        when created with the `AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path)`
        class method.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertForQuestionAnswering (Bert model)
            - contains `xlnet`: XLNetForQuestionAnswering (XLNet model)
            - contains `xlm`: XLMForQuestionAnswering (XLM model)

        This class cannot be instantiated using `__init__()` (throws an error).
    """
    def __init__(self):
        raise EnvironmentError("AutoModelWithLMHead is designed to be instantiated "
            "using the `AutoModelWithLMHead.from_pretrained(pretrained_model_name_or_path)` method.")

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        r""" Instantiates one of the question answering model classes of the library
        from a pre-trained model configuration.

        The `from_pretrained()` method takes care of returning the correct model class instance
        using pattern matching on the `pretrained_model_name_or_path` string.

        The model class to instantiate is selected as the first pattern matching
        in the `pretrained_model_name_or_path` string (in the following order):
            - contains `bert`: BertForQuestionAnswering (Bert model)
            - contains `xlnet`: XLNetForQuestionAnswering (XLNet model)
            - contains `xlm`: XLMForQuestionAnswering (XLM model)

        The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated)
        To train the model, you should first set it back in training mode with `model.train()`

        Params:
thomwolf's avatar
thomwolf committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
            pretrained_model_name_or_path: either:

                - a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
                - a path to a `directory` containing model weights saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
                - a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.

            model_args: (`optional`) Sequence of positional arguments:
                All remaning positional arguments will be passed to the underlying model's ``__init__`` method

            config: (`optional`) instance of a class derived from :class:`~pytorch_transformers.PretrainedConfig`:
                Configuration for the model to use instead of an automatically loaded configuation. Configuration can be automatically loaded when:

                - the model is a model provided by the library (loaded with the ``shortcut-name`` string of a pretrained model), or
                - the model was saved using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and is reloaded by suppling the save directory.
                - the model is loaded by suppling a local directory as ``pretrained_model_name_or_path`` and a configuration JSON file named `config.json` is found in the directory.

            state_dict: (`optional`) dict:
                an optional state dictionnary for the model to use instead of a state dictionary loaded from saved weights file.
542
                This option can be used if you want to create a model from a pretrained configuration but load your own weights.
thomwolf's avatar
thomwolf committed
543
544
545
                In this case though, you should check if using :func:`~pytorch_transformers.PreTrainedModel.save_pretrained` and :func:`~pytorch_transformers.PreTrainedModel.from_pretrained` is not a simpler option.

            cache_dir: (`optional`) string:
546
547
                Path to a directory in which a downloaded pre-trained model
                configuration should be cached if the standard cache should not be used.
thomwolf's avatar
thomwolf committed
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

            force_download: (`optional`) boolean, default False:
                Force to (re-)download the model weights and configuration files and override the cached versions if they exists.

            proxies: (`optional`) dict, default None:
                A dictionary of proxy servers to use by protocol or endpoint, e.g.: {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
                The proxies are used on each request.

            output_loading_info: (`optional`) boolean:
                Set to ``True`` to also return a dictionnary containing missing keys, unexpected keys and error messages.

            kwargs: (`optional`) Remaining dictionary of keyword arguments:
                Can be used to update the configuration object (after it being loaded) and initiate the model. (e.g. ``output_attention=True``). Behave differently depending on whether a `config` is provided or automatically loaded:

                - If a configuration is provided with ``config``, ``**kwargs`` will be directly passed to the underlying model's ``__init__`` method (we assume all relevant updates to the configuration have already been done)
                - If a configuration is not provided, ``kwargs`` will be first passed to the configuration class initialization function (:func:`~pytorch_transformers.PretrainedConfig.from_pretrained`). Each key of ``kwargs`` that corresponds to a configuration attribute will be used to override said attribute with the supplied ``kwargs`` value. Remaining keys that do not correspond to any configuration attribute will be passed to the underlying model's ``__init__`` function.
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

        Examples::

            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased')    # Download model and configuration from S3 and cache.
            model = AutoModelForQuestionAnswering.from_pretrained('./test/bert_model/')  # E.g. model was saved using `save_pretrained('./test/saved_model/')`
            model = AutoModelForQuestionAnswering.from_pretrained('bert-base-uncased', output_attention=True)  # Update configuration during loading
            assert model.config.output_attention == True
            # Loading from a TF checkpoint file instead of a PyTorch model (slower)
            config = AutoConfig.from_json_file('./tf_model/bert_tf_model_config.json')
            model = AutoModelForQuestionAnswering.from_pretrained('./tf_model/bert_tf_checkpoint.ckpt.index', from_tf=True, config=config)

        """
        if 'bert' in pretrained_model_name_or_path:
            return BertForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlnet' in pretrained_model_name_or_path:
            return XLNetForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
        elif 'xlm' in pretrained_model_name_or_path:
            return XLMForQuestionAnswering.from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)

        raise ValueError("Unrecognized model identifier in {}. Should contains one of "
                         "'bert', 'xlnet', 'xlm'".format(pretrained_model_name_or_path))