modeling_xlm.py 38.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# coding=utf-8
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLM model.
"""
from __future__ import absolute_import, division, print_function, unicode_literals

import logging
import math

import itertools
import numpy as np

import torch
from torch import nn
from torch.nn import functional as F
from torch.nn import CrossEntropyLoss, MSELoss

30
31
32
from .modeling_utils import PreTrainedModel, prune_linear_layer, SequenceSummary, SQuADHead
from .configuration_xlm import XLMConfig
from .file_utils import add_start_docstrings
33
34
35

logger = logging.getLogger(__name__)

36
XLM_PRETRAINED_MODEL_ARCHIVE_MAP = {
37
    'xlm-mlm-en-2048': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-en-2048-pytorch_model.bin",
38
39
40
41
42
    'xlm-mlm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-ende-1024-pytorch_model.bin",
    'xlm-mlm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enfr-1024-pytorch_model.bin",
    'xlm-mlm-enro-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-enro-1024-pytorch_model.bin",
    'xlm-mlm-tlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-tlm-xnli15-1024-pytorch_model.bin",
    'xlm-mlm-xnli15-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-xnli15-1024-pytorch_model.bin",
43
44
    'xlm-clm-enfr-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-enfr-1024-pytorch_model.bin",
    'xlm-clm-ende-1024': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-clm-ende-1024-pytorch_model.bin",
LysandreJik's avatar
LysandreJik committed
45
    'xlm-mlm-17-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-17-1280-pytorch_model.bin",
LysandreJik's avatar
LysandreJik committed
46
    'xlm-mlm-100-1280': "https://s3.amazonaws.com/models.huggingface.co/bert/xlm-mlm-100-1280-pytorch_model.bin",
47
}
thomwolf's avatar
xlm  
thomwolf committed
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

def create_sinusoidal_embeddings(n_pos, dim, out):
    position_enc = np.array([
        [pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)]
        for pos in range(n_pos)
    ])
    out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
    out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
    out.detach_()
    out.requires_grad = False


def gelu(x):
    """
    GELU activation
    https://arxiv.org/abs/1606.08415
    https://github.com/huggingface/pytorch-openai-transformer-lm/blob/master/model_pytorch.py#L14
thomwolf's avatar
thomwolf committed
66
    https://github.com/huggingface/pytorch-transformers/blob/master/modeling.py
67
68
69
70
71
    """
    # return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return 0.5 * x * (1.0 + torch.erf(x / math.sqrt(2.0)))


thomwolf's avatar
thomwolf committed
72
def get_masks(slen, lengths, causal, padding_mask=None):
73
74
75
76
    """
    Generate hidden states mask, and optionally an attention mask.
    """
    bs = lengths.size(0)
thomwolf's avatar
thomwolf committed
77
78
79
80
81
82
    if padding_mask is not None:
        mask = padding_mask
    else:
        assert lengths.max().item() <= slen
        alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
        mask = alen < lengths[:, None]
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

    # attention mask is the same as mask, or triangular inferior attention (causal)
    if causal:
        attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
    else:
        attn_mask = mask

    # sanity check
    assert mask.size() == (bs, slen)
    assert causal is False or attn_mask.size() == (bs, slen, slen)

    return mask, attn_mask


class MultiHeadAttention(nn.Module):

    NEW_ID = itertools.count()

thomwolf's avatar
thomwolf committed
101
    def __init__(self, n_heads, dim, config):
thomwolf's avatar
thomwolf committed
102
        super(MultiHeadAttention, self).__init__()
103
        self.layer_id = next(MultiHeadAttention.NEW_ID)
thomwolf's avatar
thomwolf committed
104
        self.output_attentions = config.output_attentions
105
106
        self.dim = dim
        self.n_heads = n_heads
thomwolf's avatar
thomwolf committed
107
        self.dropout = config.attention_dropout
108
109
        assert self.dim % self.n_heads == 0

thomwolf's avatar
thomwolf committed
110
111
112
113
        self.q_lin = nn.Linear(dim, dim)
        self.k_lin = nn.Linear(dim, dim)
        self.v_lin = nn.Linear(dim, dim)
        self.out_lin = nn.Linear(dim, dim)
114
        self.pruned_heads = set()
115

thomwolf's avatar
thomwolf committed
116
117
118
119
120
    def prune_heads(self, heads):
        attention_head_size = self.dim // self.n_heads
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_heads, attention_head_size)
121
        heads = set(heads) - self.pruned_heads
thomwolf's avatar
thomwolf committed
122
        for head in heads:
123
            head -= sum(1 if h < head else 0 for h in self.pruned_heads)
thomwolf's avatar
thomwolf committed
124
125
126
127
128
129
130
131
132
133
134
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        # Prune linear layers
        self.q_lin = prune_linear_layer(self.q_lin, index)
        self.k_lin = prune_linear_layer(self.k_lin, index)
        self.v_lin = prune_linear_layer(self.v_lin, index)
        self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
        # Update hyper params
        self.n_heads = self.n_heads - len(heads)
        self.dim = attention_head_size * self.n_heads
135
        self.pruned_heads = self.pruned_heads.union(heads)
thomwolf's avatar
thomwolf committed
136

thomwolf's avatar
thomwolf committed
137
    def forward(self, input, mask, kv=None, cache=None, head_mask=None):
138
139
140
141
142
143
144
145
146
147
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen if cache is None else cache['slen'] + qlen
        else:
            klen = kv.size(1)
thomwolf's avatar
thomwolf committed
148
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
149
        n_heads = self.n_heads
thomwolf's avatar
thomwolf committed
150
        dim_per_head = self.dim // n_heads
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))                                          # (bs, n_heads, qlen, dim_per_head)
        if kv is None:
            k = shape(self.k_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))                                      # (bs, n_heads, qlen, dim_per_head)
        elif cache is None or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))                                          # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))                                          # (bs, n_heads, qlen, dim_per_head)

        if cache is not None:
            if self.layer_id in cache:
                if kv is None:
                    k_, v_ = cache[self.layer_id]
                    k = torch.cat([k_, k], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                    v = torch.cat([v_, v], dim=2)                             # (bs, n_heads, klen, dim_per_head)
                else:
                    k, v = cache[self.layer_id]
            cache[self.layer_id] = (k, v)

        q = q / math.sqrt(dim_per_head)                                       # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))                           # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)               # (bs, n_heads, qlen, klen)
        scores.masked_fill_(mask, -float('inf'))                              # (bs, n_heads, qlen, klen)

        weights = F.softmax(scores.float(), dim=-1).type_as(scores)           # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)
thomwolf's avatar
thomwolf committed
187
188
189
190
191

        # Mask heads if we want to
        if head_mask is not None:
            weights = weights * head_mask

192
193
194
        context = torch.matmul(weights, v)                                    # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)                                            # (bs, qlen, dim)

thomwolf's avatar
xlm  
thomwolf committed
195
196
        outputs = (self.out_lin(context),)
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
197
            outputs = outputs + (weights,)
thomwolf's avatar
xlm  
thomwolf committed
198
        return outputs
199
200
201
202


class TransformerFFN(nn.Module):

thomwolf's avatar
thomwolf committed
203
    def __init__(self, in_dim, dim_hidden, out_dim, config):
thomwolf's avatar
thomwolf committed
204
        super(TransformerFFN, self).__init__()
thomwolf's avatar
thomwolf committed
205
        self.dropout = config.dropout
thomwolf's avatar
thomwolf committed
206
207
        self.lin1 = nn.Linear(in_dim, dim_hidden)
        self.lin2 = nn.Linear(dim_hidden, out_dim)
thomwolf's avatar
thomwolf committed
208
        self.act = gelu if config.gelu_activation else F.relu
209
210
211
212
213
214
215
216
217

    def forward(self, input):
        x = self.lin1(input)
        x = self.act(x)
        x = self.lin2(x)
        x = F.dropout(x, p=self.dropout, training=self.training)
        return x


218
class XLMPreTrainedModel(PreTrainedModel):
219
220
221
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
222
    config_class = XLMConfig
223
    pretrained_model_archive_map = XLM_PRETRAINED_MODEL_ARCHIVE_MAP
224
    load_tf_weights = None
thomwolf's avatar
thomwolf committed
225
    base_model_prefix = "transformer"
226
227
228

    def __init__(self, *inputs, **kwargs):
        super(XLMPreTrainedModel, self).__init__(*inputs, **kwargs)
229

230
    def _init_weights(self, module):
thomwolf's avatar
thomwolf committed
231
232
233
234
235
236
237
238
239
        """ Initialize the weights. """
        if isinstance(module, nn.Embedding):
            if self.config is not None and self.config.embed_init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
        if isinstance(module, nn.Linear):
            if self.config is not None and self.config.init_std is not None:
                nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
                if hasattr(module, 'bias') and module.bias is not None:
                    nn.init.constant_(module.bias, 0.)
thomwolf's avatar
thomwolf committed
240
        if isinstance(module, nn.LayerNorm):
241
242
243
244
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


thomwolf's avatar
thomwolf committed
245
246
247
XLM_START_DOCSTRING = r"""    The XLM model was proposed in
    `Cross-lingual Language Model Pretraining`_
    by Guillaume Lample*, Alexis Conneau*. It's a transformer pre-trained using one of the following objectives:
248

thomwolf's avatar
thomwolf committed
249
250
251
        - a causal language modeling (CLM) objective (next token prediction),
        - a masked language modeling (MLM) objective (Bert-like), or
        - a Translation Language Modeling (TLM) object (extension of Bert's MLM to multiple language inputs)
thomwolf's avatar
thomwolf committed
252

thomwolf's avatar
thomwolf committed
253
    Original code can be found `here`_.
thomwolf's avatar
thomwolf committed
254

thomwolf's avatar
thomwolf committed
255
256
    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.
thomwolf's avatar
thomwolf committed
257

thomwolf's avatar
thomwolf committed
258
259
    .. _`Cross-lingual Language Model Pretraining`:
        https://arxiv.org/abs/1901.07291
thomwolf's avatar
thomwolf committed
260

thomwolf's avatar
thomwolf committed
261
262
    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module
thomwolf's avatar
thomwolf committed
263

thomwolf's avatar
thomwolf committed
264
265
266
267
268
    .. _`here`:
        https://github.com/facebookresearch/XLM

    Parameters:
        config (:class:`~pytorch_transformers.XLMConfig`): Model configuration class with all the parameters of the model.
269
270
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
271
"""
272

thomwolf's avatar
thomwolf committed
273
274
275
276
XLM_INPUTS_DOCSTRING = r"""
    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
thomwolf's avatar
thomwolf committed
277
278
279
280

            XLM is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.

thomwolf's avatar
thomwolf committed
281
282
283
            Indices can be obtained using :class:`pytorch_transformers.XLMTokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
284
285
286
287
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
288
289
        **langs**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens to be used to indicate the language of each token in the input.
thomwolf's avatar
thomwolf committed
290
291
292
293
            Indices are languages ids which can be obtained from the language names by using two conversion mappings
            provided in the configuration of the model (only provided for multilingual models).
            More precisely, the `language name -> language id` mapping is in `model.config.lang2id` (dict str -> int) and
            the `language id -> language name` mapping is `model.config.id2lang` (dict int -> str).
294
295
296
297
298
299
300
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
thomwolf committed
301
302
303
304
305
306
307
308
309
        **lengths**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Length of each sentence that can be used to avoid performing attention on padding token indices.
            You can also use `attention_mask` for the same result (see above), kept here for compatbility.
            Indices selected in ``[0, ..., input_ids.size(-1)]``:
        **cache**:
            dictionary with ``torch.FloatTensor`` that contains pre-computed
            hidden-states (key and values in the attention blocks) as computed by the model
            (see `cache` output below). Can be used to speed up sequential decoding.
            The dictionary object will be modified in-place during the forward pass to add newly computed hidden-states.
thomwolf's avatar
thomwolf committed
310
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
thomwolf's avatar
thomwolf committed
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare XLM Model transformer outputing raw hidden-states without any specific head on top.",
                      XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
class XLMModel(XLMPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
327
328
329
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
330
331
332

    Examples::

wangfei's avatar
wangfei committed
333
334
335
336
337
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMModel.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
thomwolf's avatar
thomwolf committed
338
339

    """
340
    def __init__(self, config):  #, dico, is_encoder, with_output):
thomwolf's avatar
xlm  
thomwolf committed
341
342
343
        super(XLMModel, self).__init__(config)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
344
345

        # encoder / decoder, output layer
thomwolf's avatar
thomwolf committed
346
347
348
349
        self.is_encoder = config.is_encoder
        self.is_decoder = not config.is_encoder
        if self.is_decoder:
            raise NotImplementedError("Currently XLM can only be used as an encoder")
350
        # self.with_output = with_output
thomwolf's avatar
xlm  
thomwolf committed
351
        self.causal = config.causal
352
353

        # dictionary / languages
thomwolf's avatar
xlm  
thomwolf committed
354
        self.n_langs = config.n_langs
Shijie Wu's avatar
Shijie Wu committed
355
        self.use_lang_emb = config.use_lang_emb
thomwolf's avatar
xlm  
thomwolf committed
356
357
358
        self.n_words = config.n_words
        self.eos_index = config.eos_index
        self.pad_index = config.pad_index
359
        # self.dico = dico
thomwolf's avatar
thomwolf committed
360
361
        # self.id2lang = config.id2lang
        # self.lang2id = config.lang2id
362
        # assert len(self.dico) == self.n_words
thomwolf's avatar
thomwolf committed
363
        # assert len(self.id2lang) == len(self.lang2id) == self.n_langs
364
365

        # model parameters
thomwolf's avatar
xlm  
thomwolf committed
366
        self.dim = config.emb_dim       # 512 by default
367
        self.hidden_dim = self.dim * 4  # 2048 by default
thomwolf's avatar
xlm  
thomwolf committed
368
369
370
371
        self.n_heads = config.n_heads   # 8 by default
        self.n_layers = config.n_layers
        self.dropout = config.dropout
        self.attention_dropout = config.attention_dropout
372
373
374
        assert self.dim % self.n_heads == 0, 'transformer dim must be a multiple of n_heads'

        # embeddings
thomwolf's avatar
thomwolf committed
375
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
thomwolf's avatar
xlm  
thomwolf committed
376
377
        if config.sinusoidal_embeddings:
            create_sinusoidal_embeddings(config.max_position_embeddings, self.dim, out=self.position_embeddings.weight)
Shijie Wu's avatar
Shijie Wu committed
378
        if config.n_langs > 1 and config.use_lang_emb:
thomwolf's avatar
thomwolf committed
379
380
381
            self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
        self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
        self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
382
383
384
385
386
387

        # transformer layers
        self.attentions = nn.ModuleList()
        self.layer_norm1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.layer_norm2 = nn.ModuleList()
thomwolf's avatar
thomwolf committed
388
389
390
        # if self.is_decoder:
        #     self.layer_norm15 = nn.ModuleList()
        #     self.encoder_attn = nn.ModuleList()
391
392

        for _ in range(self.n_layers):
thomwolf's avatar
thomwolf committed
393
            self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
thomwolf's avatar
thomwolf committed
394
            self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
395
            # if self.is_decoder:
thomwolf's avatar
thomwolf committed
396
            #     self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
thomwolf's avatar
thomwolf committed
397
398
            #     self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
            self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
thomwolf's avatar
thomwolf committed
399
400
            self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))

LysandreJik's avatar
LysandreJik committed
401
402
        if hasattr(config, "pruned_heads"):
            pruned_heads = config.pruned_heads.copy().items()
403
            config.pruned_heads = {}
LysandreJik's avatar
LysandreJik committed
404
405
406
407
            for layer, heads in pruned_heads:
                if self.attentions[int(layer)].n_heads == config.n_heads:
                    self.prune_heads({int(layer): list(map(int, heads))})

408
        self.init_weights()
409

thomwolf's avatar
thomwolf committed
410
411
    def _resize_token_embeddings(self, new_num_tokens):
        self.embeddings = self._get_resized_embeddings(self.embeddings, new_num_tokens)
thomwolf's avatar
thomwolf committed
412
        return self.embeddings
thomwolf's avatar
thomwolf committed
413

thomwolf's avatar
thomwolf committed
414
415
416
417
418
419
420
421
    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
            See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.attentions[layer].prune_heads(heads)

422
423
    def forward(self, input_ids, attention_mask=None, langs=None, token_type_ids=None, position_ids=None,
                lengths=None, cache=None, head_mask=None):  # removed: src_enc=None, src_len=None
thomwolf's avatar
thomwolf committed
424
        if lengths is None:
thomwolf's avatar
thomwolf committed
425
            lengths = (input_ids != self.pad_index).sum(dim=1).long()
thomwolf's avatar
xlm  
thomwolf committed
426
        # mask = input_ids != self.pad_index
427
428

        # check inputs
thomwolf's avatar
xlm  
thomwolf committed
429
        bs, slen = input_ids.size()
430
431
        assert lengths.size(0) == bs
        assert lengths.max().item() <= slen
thomwolf's avatar
xlm  
thomwolf committed
432
        # input_ids = input_ids.transpose(0, 1)  # batch size as dimension 0
thomwolf's avatar
thomwolf committed
433
434
435
436
        # assert (src_enc is None) == (src_len is None)
        # if src_enc is not None:
        #     assert self.is_decoder
        #     assert src_enc.size(0) == bs
437
438

        # generate masks
thomwolf's avatar
thomwolf committed
439
        mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
thomwolf's avatar
thomwolf committed
440
441
        # if self.is_decoder and src_enc is not None:
        #     src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
442

thomwolf's avatar
thomwolf committed
443
444
445
446
        # position_ids
        if position_ids is None:
            position_ids = input_ids.new((slen,)).long()
            position_ids = torch.arange(slen, out=position_ids).unsqueeze(0)
447
        else:
thomwolf's avatar
thomwolf committed
448
449
            assert position_ids.size() == (bs, slen)  # (slen, bs)
            # position_ids = position_ids.transpose(0, 1)
450
451
452

        # langs
        if langs is not None:
thomwolf's avatar
thomwolf committed
453
454
            assert langs.size() == (bs, slen)  # (slen, bs)
            # langs = langs.transpose(0, 1)
455

thomwolf's avatar
thomwolf committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.n_layers, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.n_layers

471
472
473
        # do not recompute cached elements
        if cache is not None:
            _slen = slen - cache['slen']
thomwolf's avatar
xlm  
thomwolf committed
474
            input_ids = input_ids[:, -_slen:]
thomwolf's avatar
thomwolf committed
475
            position_ids = position_ids[:, -_slen:]
476
477
478
479
480
481
            if langs is not None:
                langs = langs[:, -_slen:]
            mask = mask[:, -_slen:]
            attn_mask = attn_mask[:, -_slen:]

        # embeddings
thomwolf's avatar
xlm  
thomwolf committed
482
        tensor = self.embeddings(input_ids)
thomwolf's avatar
thomwolf committed
483
        tensor = tensor + self.position_embeddings(position_ids).expand_as(tensor)
Shijie Wu's avatar
Shijie Wu committed
484
        if langs is not None and self.use_lang_emb:
485
            tensor = tensor + self.lang_embeddings(langs)
thomwolf's avatar
thomwolf committed
486
487
        if token_type_ids is not None:
            tensor = tensor + self.embeddings(token_type_ids)
488
489
490
491
492
        tensor = self.layer_norm_emb(tensor)
        tensor = F.dropout(tensor, p=self.dropout, training=self.training)
        tensor *= mask.unsqueeze(-1).to(tensor.dtype)

        # transformer layers
thomwolf's avatar
thomwolf committed
493
494
        hidden_states = ()
        attentions = ()
495
        for i in range(self.n_layers):
thomwolf's avatar
thomwolf committed
496
            if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
497
                hidden_states = hidden_states + (tensor,)
498
499

            # self attention
thomwolf's avatar
thomwolf committed
500
501
502
            attn_outputs = self.attentions[i](tensor, attn_mask, cache=cache, head_mask=head_mask[i])
            attn = attn_outputs[0]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
503
                attentions = attentions + (attn_outputs[1],)
504
505
506
507
508
            attn = F.dropout(attn, p=self.dropout, training=self.training)
            tensor = tensor + attn
            tensor = self.layer_norm1[i](tensor)

            # encoder attention (for decoder only)
thomwolf's avatar
thomwolf committed
509
510
511
512
513
            # if self.is_decoder and src_enc is not None:
            #     attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
            #     attn = F.dropout(attn, p=self.dropout, training=self.training)
            #     tensor = tensor + attn
            #     tensor = self.layer_norm15[i](tensor)
514
515
516
517
518
519

            # FFN
            tensor = tensor + self.ffns[i](tensor)
            tensor = self.layer_norm2[i](tensor)
            tensor *= mask.unsqueeze(-1).to(tensor.dtype)

thomwolf's avatar
thomwolf committed
520
521
        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
522
            hidden_states = hidden_states + (tensor,)
thomwolf's avatar
thomwolf committed
523

524
525
526
527
528
        # update cache length
        if cache is not None:
            cache['slen'] += tensor.size(1)

        # move back sequence length to dimension 0
thomwolf's avatar
thomwolf committed
529
        # tensor = tensor.transpose(0, 1)
530

thomwolf's avatar
thomwolf committed
531
        outputs = (tensor,)
532
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
533
            outputs = outputs + (hidden_states,)
thomwolf's avatar
thomwolf committed
534
        if self.output_attentions:
thomwolf's avatar
thomwolf committed
535
            outputs = outputs + (attentions,)
thomwolf's avatar
thomwolf committed
536
        return outputs  # outputs, (hidden_states), (attentions)
537
538
539
540
541
542


class XLMPredLayer(nn.Module):
    """
    Prediction layer (cross_entropy or adaptive_softmax).
    """
thomwolf's avatar
xlm  
thomwolf committed
543
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
544
        super(XLMPredLayer, self).__init__()
thomwolf's avatar
xlm  
thomwolf committed
545
546
547
548
        self.asm = config.asm
        self.n_words = config.n_words
        self.pad_index = config.pad_index
        dim = config.emb_dim
549

thomwolf's avatar
xlm  
thomwolf committed
550
        if config.asm is False:
thomwolf's avatar
thomwolf committed
551
            self.proj = nn.Linear(dim, config.n_words, bias=True)
552
553
554
        else:
            self.proj = nn.AdaptiveLogSoftmaxWithLoss(
                in_features=dim,
thomwolf's avatar
xlm  
thomwolf committed
555
556
557
                n_classes=config.n_words,
                cutoffs=config.asm_cutoffs,
                div_value=config.asm_div_value,
558
559
560
                head_bias=True,  # default is False
            )

thomwolf's avatar
thomwolf committed
561
562
    def forward(self, x, y=None):
        """ Compute the loss, and optionally the scores.
563
        """
thomwolf's avatar
thomwolf committed
564
        outputs = ()
565
566
        if self.asm is False:
            scores = self.proj(x).view(-1, self.n_words)
thomwolf's avatar
thomwolf committed
567
568
569
570
            outputs = (scores,) + outputs
            if y is not None:
                loss = F.cross_entropy(scores, y, reduction='elementwise_mean')
                outputs = (loss,) + outputs
571
        else:
thomwolf's avatar
thomwolf committed
572
573
574
575
576
            scores = self.proj.log_prob(x)
            outputs = (scores,) + outputs
            if y is not None:
                _, loss = self.proj(x, y)
                outputs = (loss,) + outputs
577

thomwolf's avatar
thomwolf committed
578
        return outputs
579

thomwolf's avatar
thomwolf committed
580

thomwolf's avatar
thomwolf committed
581
582
583
@add_start_docstrings("""The XLM Model transformer with a language modeling head on top
    (linear layer with weights tied to the input embeddings). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
584
class XLMWithLMHeadModel(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
602
603
604
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
605
606
607

    Examples::

wangfei's avatar
wangfei committed
608
609
610
611
612
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
613

thomwolf's avatar
xlm  
thomwolf committed
614
615
    """
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
616
        super(XLMWithLMHeadModel, self).__init__(config)
thomwolf's avatar
xlm  
thomwolf committed
617
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
618
        self.pred_layer = XLMPredLayer(config)
619

620
        self.init_weights()
621
622
623
624
625
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the embeddings
        """
thomwolf's avatar
thomwolf committed
626
        self._tie_or_clone_weights(self.pred_layer.proj, self.transformer.embeddings)
627

628
629
630
631
632
633
634
635
636
637
    def forward(self, input_ids, attention_mask=None, langs=None, token_type_ids=None, position_ids=None,
                lengths=None, cache=None, head_mask=None, labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               attention_mask=attention_mask,
                                               langs=langs,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               lengths=lengths, 
                                               cache=cache,
                                               head_mask=head_mask)
638

639
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
640
641
        outputs = self.pred_layer(output, labels)
        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
642

643
        return outputs
644
645


thomwolf's avatar
thomwolf committed
646
647
648
@add_start_docstrings("""XLM Model with a sequence classification/regression head on top (a linear layer on top of
    the pooled output) e.g. for GLUE tasks. """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
649
class XLMForSequenceClassification(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
650
651
652
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for computing the sequence classification/regression loss.
LysandreJik's avatar
LysandreJik committed
653
            Indices should be in ``[0, ..., config.num_labels - 1]``.
thomwolf's avatar
thomwolf committed
654
655
656
657
658
659
660
661
662
663
664
665
            If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
            If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Classification (or regression if config.num_labels==1) loss.
        **logits**: ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
666
667
668
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
669
670
671

    Examples::

wangfei's avatar
wangfei committed
672
673
674
675
676
677
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMForSequenceClassification.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
        loss, logits = outputs[:2]
678

679
    """
thomwolf's avatar
xlm  
thomwolf committed
680
    def __init__(self, config):
681
        super(XLMForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
682
        self.num_labels = config.num_labels
683

thomwolf's avatar
xlm  
thomwolf committed
684
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
685
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
686

687
        self.init_weights()
688

689
690
691
692
693
694
695
696
697
698
    def forward(self, input_ids, attention_mask=None, langs=None, token_type_ids=None, position_ids=None,
                lengths=None, cache=None, head_mask=None, labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               attention_mask=attention_mask,
                                               langs=langs,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               lengths=lengths, 
                                               cache=cache,
                                               head_mask=head_mask)
699

700
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
701
        logits = self.sequence_summary(output)
702

thomwolf's avatar
thomwolf committed
703
        outputs = (logits,) + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
704

705
706
707
708
709
710
711
712
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
thomwolf's avatar
thomwolf committed
713
            outputs = (loss,) + outputs
714

715
        return outputs
716
717


thomwolf's avatar
thomwolf committed
718
719
720
@add_start_docstrings("""XLM Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layers on top of
    the hidden-states output to compute `span start logits` and `span end logits`). """,
    XLM_START_DOCSTRING, XLM_INPUTS_DOCSTRING)
721
class XLMForQuestionAnswering(XLMPreTrainedModel):
thomwolf's avatar
thomwolf committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
    r"""
        **start_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **end_positions**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
        **is_impossible**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels whether a question has an answer or no answer (SQuAD 2.0)
        **cls_index**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size,)``:
            Labels for position (index) of the classification token to use as input for computing plausibility of the answer.
        **p_mask**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...) 

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
        **start_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-start scores (before SoftMax).
        **end_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length,)``
            Span-end scores (before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
thomwolf's avatar
thomwolf committed
749
750
751
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
thomwolf's avatar
thomwolf committed
752
753
754

    Examples::

wangfei's avatar
wangfei committed
755
756
757
758
759
760
761
        tokenizer = XLMTokenizer.from_pretrained('xlm-mlm-en-2048')
        model = XLMForQuestionAnswering.from_pretrained('xlm-mlm-en-2048')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        start_positions = torch.tensor([1])
        end_positions = torch.tensor([3])
        outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
        loss, start_scores, end_scores = outputs[:2]
762
763

    """
thomwolf's avatar
thomwolf committed
764
    def __init__(self, config):
765
        super(XLMForQuestionAnswering, self).__init__(config)
766

thomwolf's avatar
xlm  
thomwolf committed
767
        self.transformer = XLMModel(config)
thomwolf's avatar
thomwolf committed
768
        self.qa_outputs = SQuADHead(config)
thomwolf's avatar
xlm  
thomwolf committed
769

770
        self.init_weights()
771

772
773
774
775
776
777
778
779
780
781
782
    def forward(self, input_ids, attention_mask=None, langs=None, token_type_ids=None, position_ids=None,
                lengths=None, cache=None, head_mask=None, start_positions=None, end_positions=None,
                is_impossible=None, cls_index=None, p_mask=None):
        transformer_outputs = self.transformer(input_ids,
                                               attention_mask=attention_mask,
                                               langs=langs,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               lengths=lengths, 
                                               cache=cache,
                                               head_mask=head_mask)
783

784
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
785
786
787
788
789

        outputs = self.qa_outputs(output, start_positions=start_positions, end_positions=end_positions,
                                  cls_index=cls_index, is_impossible=is_impossible, p_mask=p_mask)

        outputs = outputs + transformer_outputs[1:]  # Keep new_mems and attention/hidden states if they are here
790
791

        return outputs