"tests/test_tokenization_albert.py" did not exist on "63e3827c6bc5af9807b77e07fdcdae74b7d57161"
run_tf_ner.py 10.9 KB
Newer Older
1
# coding=utf-8
Julien Plu's avatar
Julien Plu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Fine-tuning the library models for named entity recognition."""


import logging
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import os
Julien Plu's avatar
Julien Plu committed
20
from dataclasses import dataclass, field
21
from importlib import import_module
Julien Plu's avatar
Julien Plu committed
22
from typing import Dict, List, Optional, Tuple
Aymeric Augustin's avatar
Aymeric Augustin committed
23

24
import numpy as np
Julien Plu's avatar
Julien Plu committed
25
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
26

Aymeric Augustin's avatar
Aymeric Augustin committed
27
from transformers import (
28
29
    AutoConfig,
    AutoTokenizer,
Julien Plu's avatar
Julien Plu committed
30
31
    EvalPrediction,
    HfArgumentParser,
32
    TFAutoModelForTokenClassification,
Julien Plu's avatar
Julien Plu committed
33
34
    TFTrainer,
    TFTrainingArguments,
Aymeric Augustin's avatar
Aymeric Augustin committed
35
)
36
from transformers.utils import logging as hf_logging
37
from utils_ner import Split, TFTokenClassificationDataset, TokenClassificationTask
38
39


40
41
42
43
44
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()


Julien Plu's avatar
Julien Plu committed
45
logger = logging.getLogger(__name__)
46
47


Julien Plu's avatar
Julien Plu committed
48
49
50
51
52
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
53

Julien Plu's avatar
Julien Plu committed
54
55
    model_name_or_path: str = field(
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
56
    )
Julien Plu's avatar
Julien Plu committed
57
58
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
59
    )
60
61
62
    task_type: Optional[str] = field(
        default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"}
    )
Julien Plu's avatar
Julien Plu committed
63
64
65
66
67
68
69
70
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
    # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
    # or just modify its tokenizer_config.json.
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
71
    )
72
73


Julien Plu's avatar
Julien Plu committed
74
75
76
77
78
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """
79

Julien Plu's avatar
Julien Plu committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
    data_dir: str = field(
        metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
    )
    labels: Optional[str] = field(
        metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
    )
    max_seq_length: int = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
96
97


Julien Plu's avatar
Julien Plu committed
98
99
100
101
102
103
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
104

105
    if (
Julien Plu's avatar
Julien Plu committed
106
107
108
109
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
110
    ):
111
        raise ValueError(
Julien Plu's avatar
Julien Plu committed
112
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
113
        )
114

115
116
117
118
119
120
121
122
123
124
125
    module = import_module("tasks")

    try:
        token_classification_task_clazz = getattr(module, model_args.task_type)
        token_classification_task: TokenClassificationTask = token_classification_task_clazz()
    except AttributeError:
        raise ValueError(
            f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
            f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}"
        )

Julien Plu's avatar
Julien Plu committed
126
127
128
129
130
    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
131
    )
Julien Plu's avatar
Julien Plu committed
132
    logger.info(
133
134
135
        "n_replicas: %s, distributed training: %s, 16-bits training: %s",
        training_args.n_replicas,
        bool(training_args.n_replicas > 1),
Julien Plu's avatar
Julien Plu committed
136
137
138
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)
139

Julien Plu's avatar
Julien Plu committed
140
    # Prepare Token Classification task
141
    labels = token_classification_task.get_labels(data_args.labels)
Julien Plu's avatar
Julien Plu committed
142
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
Julien Plu's avatar
Julien Plu committed
143
    num_labels = len(labels)
Julien Plu's avatar
Julien Plu committed
144
145
146
147
148
149
150

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.

151
    config = AutoConfig.from_pretrained(
Julien Plu's avatar
Julien Plu committed
152
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
153
        num_labels=num_labels,
Julien Plu's avatar
Julien Plu committed
154
155
156
157
158
159
160
161
        id2label=label_map,
        label2id={label: i for i, label in enumerate(labels)},
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
162
    )
163

Julien Plu's avatar
Julien Plu committed
164
165
166
167
168
169
    with training_args.strategy.scope():
        model = TFAutoModelForTokenClassification.from_pretrained(
            model_args.model_name_or_path,
            from_pt=bool(".bin" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
170
        )
171

Julien Plu's avatar
Julien Plu committed
172
173
    # Get datasets
    train_dataset = (
174
175
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
176
177
178
179
180
181
182
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.train,
183
        )
Julien Plu's avatar
Julien Plu committed
184
185
186
187
        if training_args.do_train
        else None
    )
    eval_dataset = (
188
189
        TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
190
191
192
193
194
195
196
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.dev,
197
        )
Julien Plu's avatar
Julien Plu committed
198
199
200
        if training_args.do_eval
        else None
    )
201

Julien Plu's avatar
Julien Plu committed
202
203
204
205
206
207
208
209
    def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
        preds = np.argmax(predictions, axis=2)
        batch_size, seq_len = preds.shape
        out_label_list = [[] for _ in range(batch_size)]
        preds_list = [[] for _ in range(batch_size)]

        for i in range(batch_size):
            for j in range(seq_len):
210
                if label_ids[i, j] != -100:
Julien Plu's avatar
Julien Plu committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
                    out_label_list[i].append(label_map[label_ids[i][j]])
                    preds_list[i].append(label_map[preds[i][j]])

        return preds_list, out_label_list

    def compute_metrics(p: EvalPrediction) -> Dict:
        preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)

        return {
            "precision": precision_score(out_label_list, preds_list),
            "recall": recall_score(out_label_list, preds_list),
            "f1": f1_score(out_label_list, preds_list),
        }

    # Initialize our Trainer
    trainer = TFTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset.get_dataset() if train_dataset else None,
        eval_dataset=eval_dataset.get_dataset() if eval_dataset else None,
        compute_metrics=compute_metrics,
    )
233

Julien Plu's avatar
Julien Plu committed
234
235
236
237
238
    # Training
    if training_args.do_train:
        trainer.train()
        trainer.save_model()
        tokenizer.save_pretrained(training_args.output_dir)
239
240

    # Evaluation
Julien Plu's avatar
Julien Plu committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()
        output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")

        with open(output_eval_file, "w") as writer:
            logger.info("***** Eval results *****")

            for key, value in result.items():
                logger.info("  %s = %s", key, value)
                writer.write("%s = %s\n" % (key, value))

            results.update(result)

    # Predict
    if training_args.do_predict:
259
260
        test_dataset = TFTokenClassificationDataset(
            token_classification_task=token_classification_task,
Julien Plu's avatar
Julien Plu committed
261
262
263
264
265
266
267
            data_dir=data_args.data_dir,
            tokenizer=tokenizer,
            labels=labels,
            model_type=config.model_type,
            max_seq_length=data_args.max_seq_length,
            overwrite_cache=data_args.overwrite_cache,
            mode=Split.test,
268
        )
269

Julien Plu's avatar
Julien Plu committed
270
271
272
273
274
        predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset())
        preds_list, labels_list = align_predictions(predictions, label_ids)
        report = classification_report(labels_list, preds_list)

        logger.info("\n%s", report)
275

Julien Plu's avatar
Julien Plu committed
276
        output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
277

Julien Plu's avatar
Julien Plu committed
278
279
        with open(output_test_results_file, "w") as writer:
            writer.write("%s\n" % report)
280

Julien Plu's avatar
Julien Plu committed
281
282
283
284
285
        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")

        with open(output_test_predictions_file, "w") as writer:
            with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
286
287
288
289
290
291
                example_id = 0

                for line in f:
                    if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                        writer.write(line)

Julien Plu's avatar
Julien Plu committed
292
                        if not preds_list[example_id]:
293
                            example_id += 1
Julien Plu's avatar
Julien Plu committed
294
295
296
                    elif preds_list[example_id]:
                        output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"

297
298
                        writer.write(output_line)
                    else:
Julien Plu's avatar
Julien Plu committed
299
300
301
                        logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])

    return results
302
303
304


if __name__ == "__main__":
Julien Plu's avatar
Julien Plu committed
305
    main()