"tests/models/clap/__init__.py" did not exist on "5b396457e5035a8b16ddee14b205c098598fe6bb"
test_tf_utils.py 10.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2022 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tempfile
import unittest

from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow

22
from ..test_modeling_tf_common import floats_tensor
23
24
from .test_framework_agnostic import GenerationIntegrationTestsMixin

25
26
27
28

if is_tf_available():
    import tensorflow as tf

29
    from transformers import (
30
        AutoTokenizer,
31
32
        TFAutoModelForCausalLM,
        TFAutoModelForSeq2SeqLM,
33
34
        TFAutoModelForSpeechSeq2Seq,
        TFAutoModelForVision2Seq,
35
36
37
38
        TFLogitsProcessorList,
        TFMinLengthLogitsProcessor,
        tf_top_k_top_p_filtering,
    )
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137


@require_tf
class UtilsFunctionsTest(unittest.TestCase):
    # tests whether the top_k_top_p_filtering function behaves as expected
    def test_top_k_top_p_filtering(self):
        logits = tf.convert_to_tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=tf.float32,
        )

        non_inf_expected_idx = tf.convert_to_tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=tf.int32,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = tf.convert_to_tensor(
            [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023],
            dtype=tf.float32,
        )  # expected non filtered values as noted above

        output = tf_top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)

        non_inf_output = output[output != -float("inf")]
        non_inf_idx = tf.cast(
            tf.where(tf.not_equal(output, tf.constant(-float("inf"), dtype=tf.float32))),
            dtype=tf.int32,
        )

        tf.debugging.assert_near(non_inf_output, non_inf_expected_output, rtol=1e-12)
        tf.debugging.assert_equal(non_inf_idx, non_inf_expected_idx)


@require_tf
138
139
140
141
class TFGenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin):
    # setting framework_dependent_parameters needs to be gated, just like its contents' imports
    if is_tf_available():
        framework_dependent_parameters = {
142
            "AutoModelForCausalLM": TFAutoModelForCausalLM,
143
            "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeq2Seq,
144
            "AutoModelForSeq2SeqLM": TFAutoModelForSeq2SeqLM,
145
            "AutoModelForVision2Seq": TFAutoModelForVision2Seq,
146
147
            "LogitsProcessorList": TFLogitsProcessorList,
            "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor,
148
            "create_tensor_fn": tf.convert_to_tensor,
149
            "floats_tensor": floats_tensor,
150
151
152
            "return_tensors": "tf",
        }

153
    @slow
154
    def test_generate_tf_function_export_fixed_input_length(self):
155
        # TF-only test: tf.saved_model export
156
        test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
157
158
        input_length = 2
        max_new_tokens = 2
159
160
161
162
163
164
165
166

        class DummyModel(tf.Module):
            def __init__(self, model):
                super(DummyModel, self).__init__()
                self.model = model

            @tf.function(
                input_signature=(
167
168
                    tf.TensorSpec((None, input_length), tf.int32, name="input_ids"),
                    tf.TensorSpec((None, input_length), tf.int32, name="attention_mask"),
169
170
171
172
173
174
175
                ),
                jit_compile=True,
            )
            def serving(self, input_ids, attention_mask):
                outputs = self.model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
176
                    max_new_tokens=max_new_tokens,
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
                    return_dict_in_generate=True,
                )
                return {"sequences": outputs["sequences"]}

        dummy_input_ids = [[2, 0], [102, 103]]
        dummy_attention_masks = [[1, 0], [1, 1]]
        dummy_model = DummyModel(model=test_model)
        with tempfile.TemporaryDirectory() as tmp_dir:
            tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving})
            serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"]
            for batch_size in range(1, len(dummy_input_ids) + 1):
                inputs = {
                    "input_ids": tf.constant(dummy_input_ids[:batch_size]),
                    "attention_mask": tf.constant(dummy_attention_masks[:batch_size]),
                }
                tf_func_outputs = serving_func(**inputs)["sequences"]
193
194
195
196
197
                tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_new_tokens)
                tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)

    @slow
    def test_generate_tf_function_export_fixed_batch_size(self):
198
        # TF-only test: tf.saved_model export
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        test_model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        batch_size = 1
        max_new_tokens = 2

        class DummyModel(tf.Module):
            def __init__(self, model):
                super(DummyModel, self).__init__()
                self.model = model

            @tf.function(
                input_signature=(
                    tf.TensorSpec((batch_size, None), tf.int32, name="input_ids"),
                    tf.TensorSpec((batch_size, None), tf.int32, name="attention_mask"),
                ),
                jit_compile=True,
            )
            def serving(self, input_ids, attention_mask):
                outputs = self.model.generate(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    max_new_tokens=max_new_tokens,
                    return_dict_in_generate=True,
                )
                return {"sequences": outputs["sequences"]}

        dummy_input_ids = [[2], [102, 103]]
        dummy_attention_masks = [[1], [1, 1]]
        dummy_model = DummyModel(model=test_model)
        with tempfile.TemporaryDirectory() as tmp_dir:
            tf.saved_model.save(dummy_model, tmp_dir, signatures={"serving_default": dummy_model.serving})
            serving_func = tf.saved_model.load(tmp_dir).signatures["serving_default"]
            for input_row in range(len(dummy_input_ids)):
                inputs = {
                    "input_ids": tf.constant([dummy_input_ids[input_row]]),
                    "attention_mask": tf.constant([dummy_attention_masks[input_row]]),
                }
                tf_func_outputs = serving_func(**inputs)["sequences"]
                tf_model_outputs = test_model.generate(**inputs, max_new_tokens=max_new_tokens)
237
                tf.debugging.assert_equal(tf_func_outputs, tf_model_outputs)
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

    def test_eos_token_id_int_and_list_top_k_top_sampling(self):
        # Has PT equivalent: this test relies on random sampling
        generation_kwargs = {
            "do_sample": True,
            "num_beams": 1,
            "top_p": 0.7,
            "top_k": 10,
            "temperature": 0.7,
        }
        expectation = 14

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        text = """Hello, my dog is cute and"""
        tokens = tokenizer(text, return_tensors="tf")
        model = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2")

        eos_token_id = 638
        # forces the generation to happen on CPU, to avoid GPU-related quirks
        with tf.device(":/CPU:0"):
            tf.random.set_seed(0)
            generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))

        eos_token_id = [638, 198]
        with tf.device(":/CPU:0"):
            tf.random.set_seed(0)
            generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs)
        self.assertTrue(expectation == len(generated_tokens[0]))