test_modeling_tf_vit.py 9.51 KB
Newer Older
Yih-Dar's avatar
Yih-Dar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow ViT model. """


Matt's avatar
Matt committed
18
19
from __future__ import annotations

Yih-Dar's avatar
Yih-Dar committed
20
21
22
23
import inspect
import unittest

from transformers import ViTConfig
NielsRogge's avatar
NielsRogge committed
24
from transformers.testing_utils import require_tf, require_vision, slow
25
from transformers.utils import cached_property, is_tf_available, is_vision_available
Yih-Dar's avatar
Yih-Dar committed
26

Yih-Dar's avatar
Yih-Dar committed
27
28
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
29
from ...test_pipeline_mixin import PipelineTesterMixin
Yih-Dar's avatar
Yih-Dar committed
30
31
32
33
34
35


if is_tf_available():
    import tensorflow as tf

    from transformers import TFViTForImageClassification, TFViTModel
36
    from transformers.modeling_tf_utils import keras
Yih-Dar's avatar
Yih-Dar committed
37
38
39
40
41


if is_vision_available():
    from PIL import Image

42
    from transformers import ViTImageProcessor
Yih-Dar's avatar
Yih-Dar committed
43
44
45
46
47
48
49
50
51
52
53
54
55


class TFViTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
56
        num_hidden_layers=2,
Yih-Dar's avatar
Yih-Dar committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope

NielsRogge's avatar
NielsRogge committed
85
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
86
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
87
        self.seq_length = num_patches + 1
88

Yih-Dar's avatar
Yih-Dar committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ViTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = TFViTModel(config=config)
        result = model(pixel_values, training=False)
NielsRogge's avatar
NielsRogge committed
119
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Yih-Dar's avatar
Yih-Dar committed
120
121
122
123
124

        # Test with an image with different size than the one specified in config.
        image_size = self.image_size // 2
        pixel_values = pixel_values[:, :, :image_size, :image_size]
        result = model(pixel_values, interpolate_pos_encoding=True, training=False)
NielsRogge's avatar
NielsRogge committed
125
126
        seq_length = (image_size // self.patch_size) ** 2 + 1
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, seq_length, self.hidden_size))
Yih-Dar's avatar
Yih-Dar committed
127
128
129
130
131
132
133
134
135
136
137
138
139

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = TFViTForImageClassification(config)
        result = model(pixel_values, labels=labels, training=False)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

        # Test with an image with different size than the one specified in config.
        image_size = self.image_size // 2
        pixel_values = pixel_values[:, :, :image_size, :image_size]
        result = model(pixel_values, interpolate_pos_encoding=True, training=False)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
140
141
142
143
144
145
146
        # test greyscale images
        config.num_channels = 1
        model = TFViTForImageClassification(config)
        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

Yih-Dar's avatar
Yih-Dar committed
147
148
149
150
151
152
153
154
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_tf
155
class TFViTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
Yih-Dar's avatar
Yih-Dar committed
156
157
158
159
160
161
    """
    Here we also overwrite some of the tests of test_modeling_tf_common.py, as ViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
162
163
164
165
166
    pipeline_model_mapping = (
        {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification}
        if is_tf_available()
        else {}
    )
Yih-Dar's avatar
Yih-Dar committed
167
168
169
170
171
172
173
174
175
176
177
178

    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFViTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
179
    @unittest.skip(reason="ViT does not use inputs_embeds")
Yih-Dar's avatar
Yih-Dar committed
180
181
182
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
183
    @unittest.skip(reason="ViT does not use inputs_embeds")
Yih-Dar's avatar
Yih-Dar committed
184
185
186
187
188
189
190
191
    def test_graph_mode_with_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
192
            self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer))
Yih-Dar's avatar
Yih-Dar committed
193
            x = model.get_output_embeddings()
194
            self.assertTrue(x is None or isinstance(x, keras.layers.Layer))
Yih-Dar's avatar
Yih-Dar committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
218
        model = TFViTModel.from_pretrained("google/vit-base-patch16-224")
Yih-Dar's avatar
Yih-Dar committed
219
220
221
222
223
224
225
226
227
        self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


228
@require_tf
Yih-Dar's avatar
Yih-Dar committed
229
230
231
@require_vision
class TFViTModelIntegrationTest(unittest.TestCase):
    @cached_property
232
233
    def default_image_processor(self):
        return ViTImageProcessor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None
Yih-Dar's avatar
Yih-Dar committed
234
235
236

    @slow
    def test_inference_image_classification_head(self):
NielsRogge's avatar
NielsRogge committed
237
        model = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
Yih-Dar's avatar
Yih-Dar committed
238

239
        image_processor = self.default_image_processor
Yih-Dar's avatar
Yih-Dar committed
240
        image = prepare_img()
241
        inputs = image_processor(images=image, return_tensors="tf")
Yih-Dar's avatar
Yih-Dar committed
242
243
244
245
246
247
248
249
250
251
252

        # forward pass
        outputs = model(**inputs)

        # verify the logits
        expected_shape = tf.TensorShape((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = tf.constant([-0.2744, 0.8215, -0.0836])

        tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4)