test_modeling_tf_vit.py 9.19 KB
Newer Older
Yih-Dar's avatar
Yih-Dar committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow ViT model. """


import inspect
import unittest

from transformers import ViTConfig
NielsRogge's avatar
NielsRogge committed
22
from transformers.testing_utils import require_tf, require_vision, slow
23
from transformers.utils import cached_property, is_tf_available, is_vision_available
Yih-Dar's avatar
Yih-Dar committed
24

Yih-Dar's avatar
Yih-Dar committed
25
26
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
Yih-Dar's avatar
Yih-Dar committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


if is_tf_available():
    import tensorflow as tf

    from transformers import TFViTForImageClassification, TFViTModel


if is_vision_available():
    from PIL import Image

    from transformers import ViTFeatureExtractor


class TFViTModelTester:
    def __init__(
        self,
        parent,
        batch_size=13,
        image_size=30,
        patch_size=2,
        num_channels=3,
        is_training=True,
        use_labels=True,
        hidden_size=32,
        num_hidden_layers=5,
        num_attention_heads=4,
        intermediate_size=37,
        hidden_act="gelu",
        hidden_dropout_prob=0.1,
        attention_probs_dropout_prob=0.1,
        type_sequence_label_size=10,
        initializer_range=0.02,
        num_labels=3,
        scope=None,
    ):
        self.parent = parent
        self.batch_size = batch_size
        self.image_size = image_size
        self.patch_size = patch_size
        self.num_channels = num_channels
        self.is_training = is_training
        self.use_labels = use_labels
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.intermediate_size = intermediate_size
        self.hidden_act = hidden_act
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.type_sequence_label_size = type_sequence_label_size
        self.initializer_range = initializer_range
        self.scope = scope

NielsRogge's avatar
NielsRogge committed
81
        # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
82
        num_patches = (image_size // patch_size) ** 2
NielsRogge's avatar
NielsRogge committed
83
        self.seq_length = num_patches + 1
84

Yih-Dar's avatar
Yih-Dar committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    def prepare_config_and_inputs(self):
        pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])

        labels = None
        if self.use_labels:
            labels = ids_tensor([self.batch_size], self.type_sequence_label_size)

        config = self.get_config()

        return config, pixel_values, labels

    def get_config(self):
        return ViTConfig(
            image_size=self.image_size,
            patch_size=self.patch_size,
            num_channels=self.num_channels,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            is_decoder=False,
            initializer_range=self.initializer_range,
        )

    def create_and_check_model(self, config, pixel_values, labels):
        model = TFViTModel(config=config)
        result = model(pixel_values, training=False)
NielsRogge's avatar
NielsRogge committed
115
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
Yih-Dar's avatar
Yih-Dar committed
116
117
118
119
120

        # Test with an image with different size than the one specified in config.
        image_size = self.image_size // 2
        pixel_values = pixel_values[:, :, :image_size, :image_size]
        result = model(pixel_values, interpolate_pos_encoding=True, training=False)
NielsRogge's avatar
NielsRogge committed
121
122
        seq_length = (image_size // self.patch_size) ** 2 + 1
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, seq_length, self.hidden_size))
Yih-Dar's avatar
Yih-Dar committed
123
124
125
126
127
128
129
130
131
132
133
134
135

    def create_and_check_for_image_classification(self, config, pixel_values, labels):
        config.num_labels = self.type_sequence_label_size
        model = TFViTForImageClassification(config)
        result = model(pixel_values, labels=labels, training=False)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

        # Test with an image with different size than the one specified in config.
        image_size = self.image_size // 2
        pixel_values = pixel_values[:, :, :image_size, :image_size]
        result = model(pixel_values, interpolate_pos_encoding=True, training=False)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

NielsRogge's avatar
NielsRogge committed
136
137
138
139
140
141
142
        # test greyscale images
        config.num_channels = 1
        model = TFViTForImageClassification(config)
        pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
        result = model(pixel_values)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))

Yih-Dar's avatar
Yih-Dar committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        config, pixel_values, labels = config_and_inputs
        inputs_dict = {"pixel_values": pixel_values}
        return config, inputs_dict


@require_tf
class TFViTModelTest(TFModelTesterMixin, unittest.TestCase):
    """
    Here we also overwrite some of the tests of test_modeling_tf_common.py, as ViT does not use input_ids, inputs_embeds,
    attention_mask and seq_length.
    """

    all_model_classes = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()

    test_resize_embeddings = False
    test_head_masking = False
    test_onnx = False

    def setUp(self):
        self.model_tester = TFViTModelTester(self)
        self.config_tester = ConfigTester(self, config_class=ViTConfig, has_text_modality=False, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

NielsRogge's avatar
NielsRogge committed
170
    @unittest.skip(reason="ViT does not use inputs_embeds")
Yih-Dar's avatar
Yih-Dar committed
171
172
173
    def test_inputs_embeds(self):
        pass

NielsRogge's avatar
NielsRogge committed
174
    @unittest.skip(reason="ViT does not use inputs_embeds")
Yih-Dar's avatar
Yih-Dar committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    def test_graph_mode_with_inputs_embeds(self):
        pass

    def test_model_common_attributes(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (tf.keras.layers.Layer))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, tf.keras.layers.Layer))

    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.call)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            expected_arg_names = ["pixel_values"]
            self.assertListEqual(arg_names[:1], expected_arg_names)

    def test_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_model(*config_and_inputs)

    def test_for_image_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_for_image_classification(*config_and_inputs)

    @slow
    def test_model_from_pretrained(self):
209
        model = TFViTModel.from_pretrained("google/vit-base-patch16-224")
Yih-Dar's avatar
Yih-Dar committed
210
211
212
213
214
215
216
217
218
        self.assertIsNotNone(model)


# We will verify our results on an image of cute cats
def prepare_img():
    image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
    return image


219
@require_tf
Yih-Dar's avatar
Yih-Dar committed
220
221
222
223
224
225
226
227
@require_vision
class TFViTModelIntegrationTest(unittest.TestCase):
    @cached_property
    def default_feature_extractor(self):
        return ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224") if is_vision_available() else None

    @slow
    def test_inference_image_classification_head(self):
NielsRogge's avatar
NielsRogge committed
228
        model = TFViTForImageClassification.from_pretrained("google/vit-base-patch16-224")
Yih-Dar's avatar
Yih-Dar committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

        feature_extractor = self.default_feature_extractor
        image = prepare_img()
        inputs = feature_extractor(images=image, return_tensors="tf")

        # forward pass
        outputs = model(**inputs)

        # verify the logits
        expected_shape = tf.TensorShape((1, 1000))
        self.assertEqual(outputs.logits.shape, expected_shape)

        expected_slice = tf.constant([-0.2744, 0.8215, -0.0836])

        tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4)